首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20775篇
  免费   2366篇
  国内免费   1189篇
电工技术   1678篇
技术理论   1篇
综合类   1578篇
化学工业   2990篇
金属工艺   1152篇
机械仪表   1347篇
建筑科学   1636篇
矿业工程   663篇
能源动力   677篇
轻工业   1281篇
水利工程   626篇
石油天然气   909篇
武器工业   168篇
无线电   2675篇
一般工业技术   2354篇
冶金工业   788篇
原子能技术   409篇
自动化技术   3398篇
  2024年   44篇
  2023年   331篇
  2022年   589篇
  2021年   925篇
  2020年   688篇
  2019年   629篇
  2018年   558篇
  2017年   666篇
  2016年   620篇
  2015年   806篇
  2014年   1081篇
  2013年   1257篇
  2012年   1389篇
  2011年   1584篇
  2010年   1453篇
  2009年   1368篇
  2008年   1263篇
  2007年   1213篇
  2006年   1230篇
  2005年   923篇
  2004年   787篇
  2003年   811篇
  2002年   944篇
  2001年   745篇
  2000年   507篇
  1999年   443篇
  1998年   281篇
  1997年   220篇
  1996年   184篇
  1995年   148篇
  1994年   130篇
  1993年   99篇
  1992年   86篇
  1991年   73篇
  1990年   70篇
  1989年   45篇
  1988年   43篇
  1987年   14篇
  1986年   18篇
  1985年   5篇
  1984年   8篇
  1983年   4篇
  1982年   6篇
  1980年   5篇
  1979年   8篇
  1978年   7篇
  1977年   3篇
  1976年   3篇
  1959年   4篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
2.
Hydrogen peroxide (H2O2) has been listed as one of the 100 most important chemicals in the world. However, huge amount of residual H2O2 is hard to timely decomposed into O2 and H2O under acidic condition, easily resulting in explosion hazard. Here, we reported a core–shell structure catalyst, that is graphene with Co N structure encapsulated Co nanoparticles. Co N graphene shell serves as the active site for the H2O2 decomposition, and Co core further enhance this decomposition. Benefiting from it, the H2O2 decomposition were close to 100% after 6 cycles without pH adjustment, which increased 6 orders of magnitude compared with no catalyst. At the same time, the O2 generation reached 99.67% in 2 h with little metal leaching, and ·OH has been greatly inhibited to only 0.08%. This work can cleanly remove H2O2 with little deep oxidation and protect the process of H2O2 utilization to achieve a safer world.  相似文献   
3.
Feng  Yingrui  Hu  Kang  Zhang  Min  Ding  Wei  Kong  Xiangkai  Sheng  Zhigao  Liu  Qiangchun 《Journal of Materials Science》2022,57(1):204-216
Journal of Materials Science - Rationally designing microwave absorption materials with highly efficient and tunable bandwidth is in great demand but remains a huge challenge. In this study,...  相似文献   
4.
Radicals are closely related to human life and health and have been widely used in biology, chemistry, functional materials, etc. However, the high reactivity, disorder, and short half-lives limit their wide applications. Therefore, it remains a great challenge to prepare stable and ordered radicals. Herein, radicals are prepared with protective umbrellas (diethylmethyleneamine, DEMA) that are integrated on the surface of 2D layered materials to isolate water and oxygen and enhance the stability of radicals. Taking 2D black phosphorus (BP) as an example: triethylamine reacts with dichloromethane to form quaternary ammonium salts with further Hoffmann elimination to produce DEMA radicals that could react with one electron of a lone pair electrons in P on the surface of BP to produce P radicals, which shows a prolonged half-life of 21 days at room temperature. First-principle calculations and electron paramagnetic resonance fitting confirm that the steric hindrance constructed by dense DEMA passivation layer acts as a protective umbrella and the 2D coupling of P radicals and other P atoms in 2D BP plane to enhance the stability and strong superexchange interaction of P radicals. Furthermore, it is a general strategy to produce stable radicals integrated on the 2D plane.  相似文献   
5.
Yue  Sheng  Li  Xiaolei  Yu  Huijun  Tong  Zongwei  Liu  Zhengdao 《Journal of Porous Materials》2021,28(3):651-659
Journal of Porous Materials - High-strength silica aerogels were prepared successfully by a new two-step surface modification (TSSM) method via ambient pressure drying (APD). Methyltrimethoxysilane...  相似文献   
6.
目的:研究抗成纤维细胞生长因子(FGF-2)纳米抗体对碱烧伤诱导的大鼠角膜血管生成的治疗作用。方法:将SD大鼠分为:假手术组(Sham),模型组(Model,直径为3 mm的浸有1 mol/L NaOH溶液圆形滤纸贴于大鼠眼角膜中央处30 s,制备大鼠碱烧伤血管生成模型)和治疗组(Treatment,术后7天至21天用3 mg/mL的抗FGF-2纳米抗体溶液滴眼,每日3次,每次10 μL,共14天)。通过体视显微镜和CD31免疫组织化学染色计算大鼠角膜血管生成情况。实时荧光定量PCR、酶联免疫吸附测定和免疫组织化学染色3种方法检测抗血管内皮生长因子(VEGF)和FGF-2的mRNA和蛋白表达水平。结果:(1)血管:治疗组较模型组的面积显著减少,血管管腔较窄(P<0.05),在药物干预14天后,差异最为显著;(2)FGF-2的mRNA和蛋白表达水平:模型组与治疗组的结果相近(P>0.05);(3)VEGF的mRNA和蛋白表达水平:治疗组显著高于模型组(P<0.05)。此外,假手术组的持续给药也使得VEGF表达显著增加(P<0.05)。 结论:抗FGF-2纳米抗体可抑制由碱烧伤诱导的角膜血管新生,但也使得正常大鼠角膜或病理大鼠角膜的VEGF表达水平代偿性升高。  相似文献   
7.
Tumor-specific enhanced delivery of chemotherapeutics and modulators to tumor cells and activated pancreatic stellate cells (aPSCs), respectively, represents safer and more effective therapy for pancreatic cancer. Herein, a membrane type 1-matrix metalloproteinase (MT1-MMP)-cleavable spacer is used to assemble low-density cRGDfK onto thermosensitive liposomes loaded with phosphorylated calcipotriol (PCAL) and doxorubicin (DOX), yielding MR-T-PD. The liposome-linked cRGDfK prodrug on MR-T-PD surface is first activated by MT1-MMP, which is selectively expressed on tumor endothelial cells, to release cRGDfK. The free cRGDfK specifically promotes tumor angiogenesis, leading to 3.4-fold higher accumulation and a wider distribution of MR-T-PD in tumors. Furthermore, MR-T-PD rapidly releases PCAL and DOX into the interstitium under heat treatment. The released DOX enters tumor cells to induce apoptosis, whereas the PCAL prodrug is converted to CAL by alkaline phosphatase on the surface of aPSCs; CAL can then enter aPSCs to induce quiescence and promote the antitumor effect of DOX. Finally, by enhancing the exposure of DOX and CAL to tumor cells and aPSCs, respectively, in a tumor-specific manner, MR-T-PD exerts superior efficacy (a 5.9-fold decrease in tumor weight) without causing additional side effects. Overall, this prodrug-based smart liposome system represents a promising paradigm for pancreatic cancer therapy.  相似文献   
8.
Photoelectrochemical (PEC) water splitting into hydrogen and oxygen is a promising solution for the conversion and storage of solar energy. Because sluggish water oxidation is the bottleneck of water splitting, the design and preparation of an efficient photoanode is intensively investigated. Currently, all known photoanode materials suffer from at least one of the following drawbacks: ① low carriers separation efficiency; ② sluggish surface water oxidation reaction; ③ poor long-term stability; ④ insufficient water adsorption and gas desorption. Core–shell configurations can endow a photoanode with improved activity and stability by coating an overlayer that plays energetic, catalytic, and/or protective roles. The construction strategy has an important effect on the activity of a core–shell photoanode. Nonetheless, the mechanism for the improvement of performance is still ambiguous and is worthy of a closer examination. In this review, the successes and challenges of core–shell photoanodes for water oxidation, focusing on synthesis strategies as well as functionalities (facilitating carrier separation, surface reaction promotion, corrosion prevention, and bubble detachment) are explored. Finally, the perspectives of this class of materials in terms of new opportunities and efforts are discussed.  相似文献   
9.
In this study,a laser-assisted pulsed plasma thruster (LA-PPT) with a novel configuration is proposed as an electric propulsion thruster which separates laser ablation and electromagnetic acceleration.Owing to the unique structure of the thruster,metals can also be used as propellants,and a higher specific impulse is expected.The ablation quality,morphology,and plume distribution of various metals (aluminium alloy,red copper,and carbon steel) with different laser energies were studied experimentally.The ablation morphology and plume distribution of red copper were more uniform,as compared to those of other metals,and the ablation quality was higher,indicating its greater suitability for LA-PPT.The plume generated by nanosecond laser ablation of aluminium alloy expanded faster,which indicated that the response time of the thruster with aluminium alloy as the propellant was shorter.In addition,when the background pressure was 0.005 Pa,an obvious plume splitting phenomenon was observed in the ablation plume of the pulsed laser irradiating aluminium alloy,which may significantly reduce the utilisation rate of the propellant.  相似文献   
10.
We have synthesized N-doped mesoporous carbon by the in-suit doping template method under the carbonized temperature of 900?°C. We found that the electrochemical performance of mesoporous carbon was enhanced by N-doping. So, we tried to increase the content of nitrogen to further optimize the electrochemical performance of the mesoporous carbon as electrode materials. During the process of synthesizing mesoporous carbon, the carbonized temperature played an important role in the formation of the carbon structure and its morphology, as well as in determining the content of nitrogen. We attained a considerable electrochemical performance enhancement by changing the carbonized temperature from 900 to 700?°C. We found the content of Nitrogen decreased with the increase of the carbonized temperature and the content of Nitrogen is 6.11% at 700?°C, 5.39% at 800?°C, 3.9% at 900?°C, respectively. The best electrochemical performance was observed in the product carbonized at 700?°C, which exhibited high specific capacitance (245.6 F/g at 0.5 A/g) and good cycle ability (more than 90% of the initial capacitance after 5000 cycles) in 6 M KOH electrolyte.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号