首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19958篇
  免费   2295篇
  国内免费   960篇
电工技术   1061篇
综合类   829篇
化学工业   3490篇
金属工艺   822篇
机械仪表   718篇
建筑科学   145篇
矿业工程   73篇
能源动力   1595篇
轻工业   227篇
水利工程   24篇
石油天然气   86篇
武器工业   161篇
无线电   6046篇
一般工业技术   2679篇
冶金工业   153篇
原子能技术   167篇
自动化技术   4937篇
  2024年   16篇
  2023年   1248篇
  2022年   793篇
  2021年   794篇
  2020年   1133篇
  2019年   822篇
  2018年   821篇
  2017年   1703篇
  2016年   1771篇
  2015年   1371篇
  2014年   1737篇
  2013年   1532篇
  2012年   1559篇
  2011年   1265篇
  2010年   1046篇
  2009年   1109篇
  2008年   583篇
  2007年   988篇
  2006年   966篇
  2005年   438篇
  2004年   220篇
  2003年   265篇
  2002年   326篇
  2001年   295篇
  2000年   205篇
  1999年   104篇
  1998年   16篇
  1997年   15篇
  1996年   15篇
  1995年   5篇
  1994年   4篇
  1993年   11篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Recent generative adversarial networks (GANs) have yielded remarkable performance in face image synthesis. GAN inversion embeds an image into the latent space of a pretrained generator, enabling it to be used for real face manipulation. However, current inversion approaches for real faces suffer the dilemma of initialization collapse and identity loss. In this paper, we propose a hierarchical GAN inversion for real faces with identity preservation based on mutual information maximization. We first use a facial domain guaranteed initialization to avoid the initialization collapse. Furthermore, we prove that maximizing the mutual information between inverted faces and their identities is equivalent to minimizing the distance between identity features from inverted and original faces. Optimization for real face inversion with identity preservation is implemented on this mutual information-maximizing constraint. Extensive experimental results show that our approach outperforms state-of-the-art solutions for inverting and editing real faces, particularly in terms of face identity preservation.  相似文献   
2.
《Ceramics International》2022,48(14):20041-20052
The growing demand for radiation-resistant optical glasses for space and nuclear radiation applications has attracted significant research interest. However, radiation-resistant fluorophosphate glasses have been poorly studied. In this work, we report on the tailoring and performance of radiation-resistant fluorophosphate glasses that contained cerium through codoping with Sb2O3 and Bi2O3. The physical properties, optical properties, microstructure, and defects of fluorophosphate glasses were investigated using transmittance measurements, absorption measurements, as well as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. The results showed that the radiation resistance of all codoped fluorophosphate glasses was better than the undoped cerium-containing fluorophosphate glasses after 10–250 krad(Si) irradiation. Especially in glasses doped with Bi2O3, the optical density increment at 385 nm was only 0.1482 after 250 krad(Si) irradiation. The CeO2 prevented the development of phosphate-related oxygen hole center (POHC) defects, whereas further codoping with Bi2O3 suppressed the formation of oxygen hole center (OHC) and POEC defects, reducing the breaking of phosphate chains caused by CeO2. Bi3+ is more likely than Sb3+ to change the valence, affecting the transition equilibrium of intrinsic defects and reducing the concentration of defects produced by irradiation. When codoping with Sb2O3 and Bi2O3, Bi2O3 does not enhance radiation resistance owing to the scission effect of Sb2O3 on the phosphate chain, which is not conducive to the radiation resistance of glasses. This indicates that the cerium-containing fluorophosphate glasses doped with Bi2O3 can effectively suppress the defects caused by irradiation and improve the radiation resistance of the glasses.  相似文献   
3.
Oxygen evolution reaction (OER) plays a decisive role in electrolytic water splitting. However, it is still challengeable to develop low-cost and efficient OER electrocatalysts. Herein, we present a combination strategy via heteroatom doping, hetero-interface engineering and introducing conductive skeleton to synthesize a hybrid OER catalyst of CNT-interconnected iron-doped NiP2/Ni2P (Fe-(NiP2/Ni2P)@CNT) heterostructural nanoflowers by a simple hydrothermal reaction and subsequent phosphorization process. The optimized Fe-(NiP2/Ni2P)@CNT catalyst delivers an ultralow Tafel slope of 46.1 mV dec?1 and overpotential of 254 mV to obtain 10 mA cm?2, which are even better than those of commercial OER catalyst RuO2. The excellent OER performance is mainly attributed to its unique nanoarchitecture and the synergistic effects: the nanoflowers constructed by a 2D-like nanosheets guarantee large specific area and abundant active sites; the highly conductive CNT skeleton and the electronic modulation by the heterostructural NiP2/Ni2P interface and the hetero-atom doping can improve the catalytic activity; porous nanostructure benefits electrolyte penetration and gas release; most importantly, the rough surface and rich defects caused by phosphorization process can further enhance the OER performance. This work provides a deep insight to boost catalytic performance by heteroatom doping and interface engineering for water splitting.  相似文献   
4.
In this work, Zn-Ni co-modified LiMg0.9Zn0.1-xNixPO4 (x = 0–0.1) microwave dielectric ceramics were fabricated using a solid state synthesis route. Rietveld refinement of the XRD data revealed that all ceramic samples have formed a single phase with olivine structure. SEM images showed that the samples have a dense microstructure, that agrees with the measured relative density of 97.73 %. Based on the complex chemical bond theory, Raman and infrared reflectance spectra, we postulate that εr is mainly affected by the ionic polarizability, lattice and bond energy, while P-O bond plays a decisive role in Q×f and τf value. Optimum properties of Q×f ~ 153,500 GHz, εr ~ 7.13 and τf ~ ?59 ppm/°C were achieved for the composition LiMg0.9Zn0.06Ni0.04PO4 sintered at 875 ℃ for 2 h. This set of properties makes these ceramics an excellent candidate for LTCC, wave-guide filters and antennas for 5 G/6 G communication applications.  相似文献   
5.
《Ceramics International》2022,48(9):12537-12548
Enhancing the electrical conductivity of electrode materials via a cationic substitution strategy was recognized as an effective way of improving the electrochemical performance of Li-ion batteries. Thus, LixCa1-xFe2O4 nanoparticles were synthesized via a facile inexpensive process at low temperature. XRD peaks refer to the formation of an orthorhombic structure with the Pnma space group. HR-TEM investigations reveal orthorhombic-like shape for pure CaFe2O4, nanoplatelet-like morphology for Li0.05Ca0.95Fe2O4 and irregular distorted crystals for Li0.1Ca0.9Fe2O4. Voids and pores in Li-doped CaFe2O4 were confirmed by FESEM and BET measurements. XPS spectra of O1s prove that Li-doped CaFe2O4 have higher conductivity due to the created lattice defects and oxygen species. Li-doped CaFe2O4 anodes exhibit great improvement in their initial discharge capacities ~1219 and 1606 mAhg?1 upon substitution of Ca with 5% and 10% Li, respectively. Furthermore, 10% Li-doped CaFe2O4 anode displays the highest Li-ions diffusion coefficient and exchange current density due to the enhanced Li+ ions mobility. Moreover, the DC activation energies for the LixCa1-xFe2O4 nanoparticles decreased with increasing Li content.  相似文献   
6.
《Ceramics International》2022,48(15):21502-21514
Based on the good osteogenic and angiogenic effects of silicon and magnesium elements, three types of micro-nano magnesium-containing silicates (MS), including akermanite (Ake, Ca2MgSi2O7), diopside (Dio, CaMgSi2O6) and forsterite (For, Mg2SiO4), were incorporated into calcium phosphate cement (CPC) to improve its osteogenic and angiogenic performances for clinical application. In this present work, the physicochemical properties, osteogenesis and angiogenesis of MS/CPCs (Ake/CPCs, Dio/CPCs and For/CPCs) were investigated systematically and comparatively. The results showed that all MS/CPCs had good biomineralization and significantly stimulated the osteogenic differentiation of mBMSCs and angiogenic differentiation of HUVECs, respectively. Besides, the stimulating effects were related to not only the category of MS, but also the content of MS. The For/CPCs had a good angiogenic property but their initial setting times were beyond 60 min. The Dio/CPCs showed the lowest biological performance among the three groups of MS/CPCs due to the lower ion release (Si and Mg). The Ake was the ideal modifier that could provide CPC with appropriate physicochemical properties, better osteogenesis and angiogenesis. Simultaneously, a higher addition (10 wt%) of akermanite resulted in the best potential to bone regeneration. Taken together, this research provides an effective approach to improve the overall performance of CPC, and 10Ake/CPC is of great promising prospect in bone repair.  相似文献   
7.
A series of 3 C-SiC coatings were prepared by organometallic chemical vapor deposition (MOCVD) using precursor solution containing a varying proportion of commercial-grade hexamethyldisiloxane (HMDSO) and n-hexane. The phase composition, bonding state, and microstructure of 3 C-SiC coatings were studied in detail by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The microstructure and mechanical properties of the optimal 3 C-SiC coating were characterized by scanning transmission electron microscopy (STEM) and nanoindentation, respectively. Our results revealed that the amount of undesired graphite phase can be significantly reduced in the 3 C-SiC coating by introducing hydrogen gas in the reaction chamber alongside increasing the ratio of HMDSO/n-hexane in the precursor mixture. The STEM results revealed that the optimal coating was predominantly composed of nano-crystalline 3 C-SiC grains alongside a small amount of amorphous graphite. The hardness and elastic modulus of the optimal coating were 38.19 GPa and 363.2 GPa, respectively.  相似文献   
8.
Transparent Er:Y2O3 ceramics with sub-micron grain size (<1 μm) were fabricated by using one-step vacuum sintering followed by hot isostatic pressing (HIPing) technique. The transmission of the undoped Y2O3 reaches 83%. The structural characteristics including the phonon energy were investigated through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) analysis and scanning electron microscopy (SEM) measurement. The overall spectroscopic properties of transmission, fluorescence emission up to 3000 nm, lifetime, up-conversion luminescence, and refractive index were systematically studied for both 0.25 at% and 7.0 at% Er:Y2O3 ceramics with different thicknesses. The comparison of the spectra of the fluorescence emission and up-conversion luminescence under both 976 and 808 nm laser excitation was performed. The multiple high-energy-state transitional processes after the excited state absorption (ESA) processes involved in the up-conversion are discriminated between the multi-phonon non-radiative transitions and the radiative transitions according to the measured maximum phonon vibrational energy. The calculation was performed based on the Judd–Ofelt theory.  相似文献   
9.
Dense (1-x)wt%CaSnSiO5-xwt%K2MoO4 (CSSO-KMO) composite ceramics were fabricated by the cold sintering process at 180 °C under 400 MPa for 60 min. X-ray diffraction, Energy dispersive X-ray and Raman spectroscopy confirmed that CSSO and KMO coexisted without intermediate phases. As KMO weight fraction increased, relative permittivity (εr) and temperature coefficient of resonant frequency (τf) decreased and the microwave quality factor (Q×f, where f is resonant frequency) increased. Near-zero τf (-0.5 ppm/°C) was obtained for 65 wt%CSSO-35 wt%KMO with εr ~ 9.2 and Q×f ~ 6240 GHz. No chemical reaction between ceramic composites and silver was observed, demonstrating potential for cofiring with Ag-paste. A prototype antenna was fabricated from 65 wt%CSSO-35 wt%KMO composite ceramic with a bandwidth of 144 MHz @ -10 dB, a gain of 5.7 dBi and a total efficiency of 88.4 % at 5.2 GHz, suitable for 5 G mobile communication systems.  相似文献   
10.
Phase change memory (PCM) is an emerging non-volatile data storage technology concerned by the semiconductor industry. To improve the performances, previous efforts have mainly focused on partially replacing or doping elements in the flagship Ge-Sb-Te (GST) alloy based on experimental “trial-and-error” methods. Here, the current largest scale PCM materials searching is reported, starting with 124 515 candidate materials, using a rational high-throughput screening strategy consisting of criteria related to PCM characteristics. In the results, there are 158 candidates screened for PCM materials, of which ≈68% are not employed. By further analyses, including cohesive energy, bond angle analyses, and Born effective charge, there are 52 materials with properties similar to the GST system, including Ge2Bi2Te5, GeAs4Te7, GeAs2Te4, so on and other candidates that have not been reported, such as TlBiTe2, TlSbTe2, CdPb3Se4, etc. Compared with GST, materials with close cohesive energy include AgBiTe2, TlSbTe2, As2Te3, TlBiTe2, etc., indicating possible low power consumption. Through further melt-quenching molecular dynamic calculation and structural/electronic analyses, Ge2Bi2Te5, CdPb3Se4, MnBi2Te4, and TlBiTe2 are found suitable for optical/electrical PCM applications, which further verifies the effectiveness of this strategy. The present study will accelerate the exploration and development of advanced PCM materials for current and future big-data applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号