首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9340篇
  免费   1741篇
  国内免费   654篇
电工技术   373篇
技术理论   4篇
综合类   436篇
化学工业   718篇
金属工艺   960篇
机械仪表   1123篇
建筑科学   183篇
矿业工程   26篇
能源动力   485篇
轻工业   24篇
水利工程   27篇
石油天然气   19篇
武器工业   140篇
无线电   1549篇
一般工业技术   1969篇
冶金工业   103篇
原子能技术   70篇
自动化技术   3526篇
  2024年   19篇
  2023年   330篇
  2022年   341篇
  2021年   502篇
  2020年   466篇
  2019年   402篇
  2018年   547篇
  2017年   699篇
  2016年   712篇
  2015年   735篇
  2014年   865篇
  2013年   813篇
  2012年   1028篇
  2011年   935篇
  2010年   717篇
  2009年   699篇
  2008年   379篇
  2007年   534篇
  2006年   426篇
  2005年   161篇
  2004年   81篇
  2003年   70篇
  2002年   72篇
  2001年   93篇
  2000年   50篇
  1999年   54篇
  1986年   1篇
  1980年   1篇
  1979年   1篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
In nature, the feathers of the goose Anser cygnoides domesticus stay superhydrophobic over a long term, thought as the main reason for keeping the surface clean. However, contaminants, especially those that are oleophilic or trapped within textures, cannot be removed off the superhydrophobic feathers spontaneously. Here, a different self-cleaning strategy based on superhydrophilic feathers is revealed that is imparted by self-coating of the amphiphilic saliva, which enables removing away low-surface-tension and/or small-size contaminants by forming directional water sheeting depending on their unique anisotropic microstructures. Particularly, the surface superhydrophilicity is switchable to superhydrophobicity upon exposure to air for maintaining a clean surface for a long time, which is further enhanced by coating with self-secreted preening oil. By alternate switching between a transient superhydrophilicity and a long-term stable superhydrophobicity, the goose feathers exhibit an integrated smart self-cleaning strategy, which is also shared by other aquatic birds. An attractive point is the re-entrant structure of the feathers, which facilitates not only liquid spreading on superhydrophilic feathers, but also long-term stability of the cleaned surface by shedding water droplets off the superhydrophobicity feathers. Thus, artificial self-cleaning microtextures are developed. The result renews the common knowledge on the self-cleaning of aquatic bird feathers, offering inspiration for developing bioinspired self-cleaning microtextures and coatings.  相似文献   
3.
The uniaxial tensile test of the 5A06-O aluminium–magnesium (Al–Mg) alloy sheet was performed in the temperature range of 20–300 °C to obtain the true stress–true strain curves at different temperatures and strain rates. The constitutive model of 5A06-O Al–Mg alloy sheet with the temperature range from 150 to 300°C was established. Based on the test results, a unique finite element simulation platform for warm hydroforming of 5A06-O Al–Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen, and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up. Combined with the experiment, the influence of the temperature field distribution and loading conditions on the sheet formability was studied. The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material. As the temperature increases, the impact of the punching speed on the forming becomes particularly obvious; the optimal values of the fluid pressure and blank holder force required for forming are reduced.  相似文献   
4.
For solid oxide fuel cells, an important structural requirement is that the electrolyte layer needs to be dense and the electrode layer porous, which is difficult to obtain by conventional cosintering. In this work, flash cosintering of a double layer structure consisting of a Gd-doped ceria substrate with a lanthanum strontium cobalt ferrite nanofibre coating is investigated. Experimental and finite element modelling results reveal that when the LSCF layer is connected to the electrode, the heat is concentrated in the LSCF layer, which leads to a huge temperature gradient and introduces severe cracking. When the LSCF layer is electrically isolated from the electrode, the heat is concentrated in the GDC layer, and the temperature gradient is dramatically reduced. In this situation, the density of GDC can reach 92.86% while a high porosity of 52.26% is maintained in the LSCF layer, which is higher than that of the conventional cosintered sample.  相似文献   
5.
In this study, seven different filler materials in different proportions were added to a Ba-Ca-Si glass matrix “H” to investigate new sealant with higher thermal expansion coefficient (CTE) value and good sealing performance for application in oxygen transport membrane (OTM). SrTi0.75Fe0.25O3-δ (STF25) was used as an OTM, and the sealing partners were ferritic steel Aluchrom and pre-oxidized Aluchrom. Compatibility tests were carried out to investigate the feasibility of the composites. Higher CTE values were found in dilatometer tests on composite samples by adding 40 wt% Ag (HAg40) and 30 wt% Ni-Cr (HNC30). Gas-tightness measurements of sandwiched samples produced appropriate helium leakage rates in the range of 10?6 mbar·l·s?1. Sealing behaviour of sealants HAg40 and HNC30 were investigated by joining STF25 and as-delivered/pre-oxidized Aluchrom together. Scanning electron microscopy (SEM) on cross-sections of the joints revealed a homogeneous microstructure and good adherence of the glass sealants to support metals and STF25.  相似文献   
6.
Crowd counting with density estimation has been an active research community due to its significant applications in the fields of public security, video surveillance, traffic monitoring. However, Crowd counting for congested scenes often suffers from some obstacles including severe occlusions, large scale variations, noise interference, etc. In this paper, using the first ten layers of a modified VGG16 and dilated convolution layers as the framework, we have proposed a CNN based crowd counting and density estimation model improved by the attention aware modules with residual connections. To tackle the problem of noise interference, convolutional block attention modules have been introduced into the deep network to segment the foreground and background to focus on interest information, refining deeper features of the input image. To improve information transmission and reuse, residual connections are utilized to link 3 attention blocks. Meanwhile, dilated convolution layers keep larger reception fields and obtain high-resolution density maps. The proposed method has been evaluated on three public benchmarks, i.e. Shanghai Tech A & B, UCF-QNRF and MALL, achieving the mean absolute errors of 64.6 & 8.3, 113.8 and 1.68, respectively. The results outperform some existing excellent approaches. This indicates that the proposed model has high accuracy and better robustness, which is suitable for crowd counting and density estimation in various congested scenes.  相似文献   
7.
8.
Prognostics and health management of proton exchange membrane fuel cell (PEMFC) systems have driven increasing research attention in recent years as the durability of PEMFC stack remains as a technical barrier for its large-scale commercialization. To monitor the health state during PEMFC operation, digital twin (DT), as a smart manufacturing technique, is applied in this paper to establish an ensemble remaining useful life prediction system. A data-driven DT is constructed to integrate the physical knowledge of the system and a deep transfer learning model based on stacked denoising autoencoder is used to update the DT with online measurement. A case study with experimental PEMFC degradation data is presented where the proposed data-driven DT prognostics method has applied and reached a high prediction accuracy. Furthermore, the predicted results are proved to be less affected even with limited measurement data.  相似文献   
9.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
10.
为了解决长行程定子不连续永磁直线同步电机存在的因无法全程安装位置传感器和不同动子和定子之间的电磁参数不固定所造成的控制性能下降的难题,提出一种在每一段定子内先进行参数标定,再进行速度控制的控制系统设计。首先,在动子进入过程中,对电机进行电磁参数标定,根据标定参数对控制器参数进行调整,以达到更好的控制效果。然后,使用无位置传感器控制系统使动子快速达到设定速度值并稳定运行。实验结果表明:动子进入过程参数标定精度分别为0.002Wb和0.000 4H;无位置传感器控制中位置估计精度为0.63mm,速度收敛时间为0.45s,稳态误差为0.02m/s。基本满足永磁直线同步电机用于长行程运输的控制快速性、稳定性等要求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号