首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   129篇
  国内免费   18篇
电工技术   61篇
综合类   123篇
化学工业   104篇
金属工艺   21篇
机械仪表   30篇
建筑科学   20篇
矿业工程   3篇
能源动力   75篇
轻工业   9篇
水利工程   2篇
石油天然气   5篇
武器工业   2篇
无线电   219篇
一般工业技术   122篇
冶金工业   11篇
原子能技术   4篇
自动化技术   133篇
  2023年   48篇
  2022年   27篇
  2021年   35篇
  2020年   19篇
  2019年   24篇
  2018年   35篇
  2017年   32篇
  2016年   40篇
  2015年   39篇
  2014年   30篇
  2013年   48篇
  2012年   36篇
  2011年   33篇
  2010年   40篇
  2009年   33篇
  2008年   42篇
  2007年   74篇
  2006年   91篇
  2005年   85篇
  2004年   26篇
  2003年   17篇
  2002年   20篇
  2001年   12篇
  2000年   24篇
  1999年   14篇
  1998年   9篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
排序方式: 共有944条查询结果,搜索用时 15 毫秒
1.
Electroreduction of small molecules such as H2O, CO2, and N2 for producing clean fuels or valuable chemicals provides a sustainable approach to meet the increasing global energy demands and to alleviate the concern on climate change resulting from fossil fuel consumption. On the path to implement this purpose, however, several scientific hurdles remain, one of which is the low energy efficiency due to the sluggish kinetics of the paired oxygen evolution reaction (OER). In response, it is highly desirable to synthesize high-performance and cost-effective OER electrocatalysts. Recent advances have witnessed surface reconstruction engineering as a salient tool to significantly improve the catalytic performance of OER electrocatalysts. In this review, recent progress on the reconstructed OER electrocatalysts and future opportunities are discussed. A brief introduction of the fundamentals of OER and the experimental approaches for generating and characterizing the reconstructed active sites in OER nanocatalysts are given first, followed by an expanded discussion of recent advances on the reconstructed OER electrocatalysts with improved activities, with a particular emphasis on understanding the correlation between surface dynamics and activities. Finally, a prospect for clean future energy communities harnessing surface reconstruction-promoted electrochemical water oxidation will be provided.  相似文献   
2.
Inorganic nanoparticles (NPs) offer significant advantages to the biomedical field owing to their large surface area, controllable structures, diverse surface chemistry, and unique optical and physical properties. Researchers worldwide have shown that inorganic NPs and the released metal ions can act as therapeutic agents in targeted tissues or to cure various diseases without acute toxicity. In this progress report, the recent developments in inorganic NPs with different compositions directly used as therapeutics are discussed. First, the recent convergence of nanotechnology and biotechnology in biomedical applications as well as the unique functions, features, and advantages of inorganic NPs in biomedical applications are summarized. Thereafter, the biological effects of inorganic compositions in NPs which include balancing the intracellular redox environment, regulating the specific cellular signaling and cellular behaviors, and apoptosis are explained. In addition, the emerging therapeutic applications of inorganic NPs in various diseases are exemplified. Finally, the perspectives and challenges for overcoming the weaknesses of inorganic NPs as therapeutics are discussed. By carefully considering and investigating the biological effects of inorganic NPs and metal ions released from NPs, more promising inorganic NPs based therapeutic agents can be developed.  相似文献   
3.
The development of high-performance electrocatalysts for methanol oxidation is an urgent task to enhance the efficiency of direct methanol fuel cells. We report a simple and controllable method to fabricate Pt-decorated TiN electrocatalysts using self-terminated electrodeposition at room temperature and ambient pressure. Under optimized deposition parameters such as electrolyte pH, TiN substrate pretreatment, and pulsed deposition potential, quenching of the Pt electrodeposition facilitates obtaining an extremely low Pt mass loading (0.93 μg/cm2) on the TiN substrate. Repeated deposition potential pulses enable a gradual increase in Pt loading, with a precise control of the loaded Pt mass. Maximum intrinsic and mass activities for the methanol oxidation reaction are achieved for the catalyst with a Pt loading mass of 55.0 μg/cm2, prepared by 20 deposition pulses. The maximum intrinsic activity achieved with the Pt-decorated TiN electrocatalyst is five times higher than that obtained with bulk Pt. The present results thus provide a facile method for the fabrication of cost-effective electrocatalysts.  相似文献   
4.
A new concept is introduced to fabricate flexible, on-chip supercapacitors by electrophoretically depositing highly dispersed reduced graphene oxide/polypyrrole on interdigital-like electrodes. By the unique method, the deposited films could construct on the substrate facilely and uniformly. The prepared all-solid-state device demonstrates high volumetric capacitance (about 147.9 F cm−3), high energy density (13.15 mWh cm−3 at a power density of 1300 mW cm−3) and excellent cycling stability (approximately 71.7% of the initial capacitance retained after 5000 cycles). Compared with other supercapacitor, the device demonstrated here is lightweight, flexible and inexpensive.  相似文献   
5.
Mao  Xi  Li  Hao  Kim  Jinwoo  Deng  Shuai  Deng  Renhua  Kim  Bumjoon J.  Zhu  Jintao 《Nano Research》2021,14(12):4644-4649

A solvent annealing-induced structural reengineering approach is exploited to fabricate polymersomes from block copolymers that are hard to form vesicles through the traditional solution self-assembly route. More specifically, polystyrene-b-poly(4-vinyl pyridine) (PS-b-P4VP) particles with sphere-within-sphere structure (SS particles) are prepared by three-dimensional (3D) soft-confined assembly through emulsion-solvent evaporation, followed by 3D soft-confined solvent annealing upon the SS particles in aqueous dispersions for structural engineering. A water-miscible solvent (e.g., THF) is employed for annealing, which results in dramatic transitions of the assemblies, e.g., from SS particles to polymersomes. This approach works for PS-b-P4VP in a wide range of block ratios. Moreover, this method enables effective encapsulation/loading of cargoes such as fluorescent dyes and metal nanoparticles, which offers a new route to prepare polymersomes that could be applied for cargo release, diagnostic imaging, and nanoreactor, etc.

  相似文献   
6.
This paper presents a fast distance relay for series compensated transmission lines based on the R–L differential-equation algorithm using the theory of equal transfer process of transmission lines. The measuring distances based on the proposed algorithm can fast approach the actual value of fault distance when a fault occurs in front of the series capacitor. When a fault occurs behind of the series capacitor, the fault loop, including the series capacitor, does not match the R–L transmission line model, so the measuring distances fluctuate severely. Based on this, the relative position of the fault with respect to the series capacitor can be judged effectively according to the fluctuation range of the measuring distances, and the accurate fault location can be obtained fast. A variety of PSCAD/EMTDC simulation tests show that the new relay has fast operating speed and high accuracy when applied to the long series compensated transmission lines.  相似文献   
7.
8.
In this work, we propose a modulation doping strategy for simultaneous achievement of low lattice thermal conductivity and high Seebeck coefficient in the Cu2GeSe3 compound. The Ag and In dual-doping can optimize the hole carrier concentration to balance electrical conductivity and Seebeck coefficient, achieving a high power factor of ~6.4 μW cm?1 K?2 for the Cu2GeSe3 compound. The Ag point defect makes a great contribution to blocking the propagation of phonons besides the phonon-phonon Umklapp process, yielding a minimum lattice thermal conductivity of ~0.38 W m–1 K–1. Remarkably, a maximum ZT value of ~0.97 at 723 K is achieved for Cu1.8Ag0.2Ge0.95In0.05Se3 compound, which is the highest value for the Cu2GeSe3-based systems in the temperature range of 323–723 K.  相似文献   
9.
Journal of Applied Electrochemistry - In this study, a sensitive and selective electrochemical sensor based on a zirconia oxide-decorated gold nanoflake nanocomposite-modified glassy carbon...  相似文献   
10.
The oxidation resistance of ultra-high-temperature ceramic material (HfB2-30 vol%SiC)-2 vol%rGO (rGO: reduced graphene oxide) under long-term exposure (2000s) to a supersonic air flow has been studied. The ceramics were obtained by reactive hot pressing of HfB2-(SiO2-C)-rGO composite powder at a temperature of 1800°C (pressure 30 MPa, holding time 15 min, Ar). The surface temperature of graphene-modified ceramics under the influence of heating by high-enthalpy air flow (heat flow q reached 779 W·cm–2) did not exceed 1700°C, which is 650–700°C less than for the HfB2-30 vol%SiC baseline ceramics. This may be related to an increase in the efficiency of heat transfer from the sample to the water-cooled module, due to the higher thermal conductivity of the rGO-containing material. Thereby, a decrease in the material degradation degree has been noted, i.e. decrease in the recession rate and decrease in the total thickness of the oxidised ceramic layer by tenth. The peculiarities of the oxidised surface and near-surface region microstructure upon aerodynamic heating of the graphene-modified ceramic material, have been shown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号