首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   3篇
  无线电   4篇
  2016年   1篇
  2015年   3篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
基于小波变换与支持向量机回归的冬小麦叶面积指数估算   总被引:1,自引:0,他引:1  
叶面积指数(LAI)是作物长势诊断及产量预测的重要参数。通过对冬小麦采样点的高光谱曲线进行连续小波变换(CWT),然后利用小波系数与LAI建立支持向量机回归(SVR)模型,实现冬小麦不同生育时期的叶面积指数估算。通过对所研究方法与选取的植被指数、偏最小二乘(PLS)回归等5种方法的反演结果进行统计分析。结果表明:利用连续小波变换确定的LAI的敏感波段为680、739、802、895 nm,对应尺度分别为8、4、9和8,对应小波系数的LAI回归确定系数(R2)明显高于冠层反射率的回归确定系数;利用小波系数与LAI建立的SVR模型的反演精度最高,模型实测值与预测值的检验精度(R2)为0.86,均方根误差(RMSE)为0.43;而常用植被指数(归一化植被指数,NDVI;比值植被指数,RVI)建立的估测模型对冬小麦多个生育时期LAI反演精度最低(R2<0.76,RMSE>0.56)。因此利用连续小波变换进行数据预处理,能更好地筛选出对叶面积指数敏感的信息,LAI回归方法比较结果表明,SVR比PLS更适合于LAI的估测,通过将CWT与SVR结合(CWT-SVR)能实现不同生育时期冬小麦叶面积指数的遥感估算。  相似文献
2.
通过对地球科学激光测高系统(Geoscience Laser Altimeter System,GLAS)波形数据进行高斯分解,提取精确的波形特征信息,计算出GLAS波形数据激光穿透指数(LPI),基于LPI提出GLAS数据反演叶面积指数(LAI)的新方法,建立了GLAS数据反演森林LAI的模型(R2=0.84,RMSE=0.64),并用留一交叉验证法(LOOCV)对反演模型的可靠性进行了验证,结果表明,该模型没有过度拟合,具有很好的泛化能力,最后通过人工神经网络融合GLAS与TM(Thematic Mapper,专题制图仪)遥感数据实现区域尺度森林LAI反演,用25个实测LAI对反演精度进行了验证,研究表明反演LAI与实测值较为接近,精度较高(R2=0.76,RMSE=0.69),为生态环境研究提供精确的输入参数,为GLAS数据大区域高精度LAI反演提供新的方法和思路.  相似文献
3.
基于天宫一号高光谱成像仪2012年3月6日获取的可见近红外谱段数据,分别进行了氧气吸收通道的同步和非同步替代光谱定标,为了提高非同步替代光谱定标结果的可靠性,利用与同步实验日期相近的另外两景图像进行了多次非同步替代光谱定标.结果表明:基于三景图像的非同步替代光谱定标结果相近,差异小于0.2 nm,标准差小于0.11;同步和非同步两种替代光谱定标结果差异小于0.3 nm;以星上定标结果为基准,两种替代光谱定标方法的误差分别为0.384 nm和0.489 nm,二者差异较小.可见,可采用非同步替代光谱定标方法对高光谱成像仪进行高频次的光谱定标.  相似文献
4.
叶面积指数(LAI)是衡量湿地生态系统健康状况的重要指标.根据鄱阳湖湿地植被生长密集、LAI动态范围大的特点,针对雷达数据的复杂散射机制,利用Freeman-Durden极化分解技术,定义了一种雷达植被指数,并考虑光学植被指数的饱和性,尝试将光学植被指数和雷达植被指数相结合,构建融合植被指数来估算植被LAI.通过实测数据和理论模型模拟数据与LAI的相关性分析,表明融合植被指数能有效地提高与LAI的相关性.利用融合植被指数、光学植被指数、雷达植被指数与LAI构建最佳拟合模型得出:光学微波融合植被指数能更准确地估算鄱阳湖湿地植被LAI.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号