首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   9篇
  国内免费   7篇
综合类   3篇
化学工业   14篇
金属工艺   5篇
机械仪表   4篇
建筑科学   1篇
矿业工程   1篇
能源动力   13篇
无线电   17篇
一般工业技术   10篇
冶金工业   1篇
原子能技术   1篇
自动化技术   17篇
  2024年   3篇
  2023年   5篇
  2022年   8篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   7篇
  2017年   12篇
  2016年   1篇
  2015年   6篇
  2014年   5篇
  2013年   5篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2005年   3篇
  2002年   1篇
  1999年   3篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1984年   1篇
排序方式: 共有87条查询结果,搜索用时 10 毫秒
1.
Due to the surface inhomogeneity of the solid supports, direct growth of uniform bimetallic nanoparticles (NPs) with controllable structure and size thereon is particularly challenging. Herein, a surface-confinement strategy is reported to directly prepare ultrafine bimetallic Pt M NPs (MFe, Cu, and Co) with structure of core-shell or intermetallic compounds on an N functionalized carbon support (NC). It is found that the N species of NC support can atomically disperse metal cations of precursors, which largely renders uniform nucleation and growth of bimetallic NPs and fine structure modulation of them. In another regard, metal transfer is confined to a narrow region on NC via N-mediation, hence greatly favoring localized particle growth and formation of ultrafine bimetallic NPs. Remarkably, the ultrafine 3.1 ± 0.7 nm intermetallic Pt3Fe NPs on NC displayed excellent catalytic activity and durability toward electrochemical hydrogen evolution reaction.  相似文献   
2.
Dynamic vibration absorber (DVA) is an effective device for suppressing resonant vibration of noisy machineries and structures. However, the optimum design of DVA requires precise tuning of the damping force in the DVA, which unfortunately is often not practical and prone to changes of working conditions. In this paper, a tunable electromagnetic shunt damper (EMSD) with different opposing magnet pairs configurations is tested for the optimum design of DVA. The optimum magnet pairs configuration is derived to provide the maximum damping force in the DVA. Both simulations and experiments are conducted to verify the damping coefficient variation with the number of magnet pairs in the EMSD. The experimental optimization procedure of the DVA is designed according to the fixed-points theory. The damping force generated by the EMSD can be readily adjusted by varying the external resistance of the EMSD. This is the first experimental implementation report of the optimization procedure described in the fixed-points theory. The proposed tunable EMSD can conveniently allow for onsite optimal tuning of DVA. The proposed design methodology provides fine tuning of the damping coefficient of EMSD to achieve robust optimal DVA performance, even when subject to changes of external parasitic damping.  相似文献   
3.
A high activity aluminide coating was formed on the γ phase Inconel 625 superalloy by the pack cementation process. Transmission electron microscopy was used to investigate the structure of the transient oxides formed on the aluminide coating. The transient oxides formed on the coating after exposure in air at 1200 °C for 250 s were found to consist of highly oriented NiO, Ni(Al, Cr)2O4 and α-(Al, Cr)2O3.  相似文献   
4.
An experiment for heat transfer of water flowing in a vertical rifled tube was conducted at subcritical and supercritical pressure. The main purpose is to explore the heat transfer characteristics of the new-type rifled tube at low mass flux. Operating conditions included pressures of 12–30 MPa, mass flux of 232–1200 kg/(m2 s), and wall heat fluxes of 133–719 kW/m2. The heat transfer performance and wall temperature distribution at various operating conditions were captured in the experiment. In the present paper, the heat transfer mechanism of the rifled tube was analyzed, the effects of pressure, wall heat flux and mass flux on heat transfer were discussed, and corresponding empirical correlations were also presented. The experimental results exhibit that the rifled tube has an obvious enhancement in heat transfer, even at low mass flux. In comparison with a smooth tube, the rifled tube efficiently prevents Departure from Nucleate Boiling (DNB) and delays dryout at subcritical pressure, and also improves the heat transfer of supercritical water remarkably, especially near pseudo-critical point. An increase in pressure or wall heat flux impairs the heat transfer at both subcritical and supercritical pressure, whereas the increasing mass flux has a contrary effect.  相似文献   
5.
A simple displacement-based 3-node, 18-degree-of-freedom flat triangular plate/shell element LDT18 is proposed in this paper for linear and geometrically nonlinear finite element analysis of thin and thick laminated composite plates. The presented element is based on the first-order shear deformation theory (FSDT), and the total Lagrangian approach is employed to formulate the element for geometrically nonlinear analysis. The deflection and rotation functions of the element boundary are obtained from the Timoshenko’s laminated composite beam functions, hence convergence to the thin plate solution can be achieved theoretically and shear-locking problem is avoided naturally. The plane displacement interpolation functions of the Airman’s triangular membrane element with drilling degrees of freedom are taken as the in-plane displacements of the element. Numerical examples demonstrate that the present element is accurate and efficient for linear and geometrically nonlinear analysis of thin to moderately thick laminated composite plates.  相似文献   
6.
Evaporation of ethanol from square packed arrays of 3.95 mm diameter copper spheres in a transparent, enclosed chamber is investigated. The enclosure ensures that relatively saturated vapor conditions exist near the free surface. The desired heat flux is imposed on the copper substrate upon which the copper spheres are mounted, and the liquid level in the bed is maintained by wicking from a continuous supply of liquid provided by a syringe pump. Transparent windows in the enclosure allow for visualization of the evaporating liquid meniscus shape, which is recorded for different liquid feeding rates and heat fluxes. Experimentally measured meniscus profiles are compared to analytical results based on surface-energy minimization. A meniscus microregion is defined from the contact line to the length where the liquid thickness reaches 10 μm. An approximate kinetic theory-based analysis estimates that up to ~55% of the total meniscus mass transfer occurs in this microregion.  相似文献   
7.
A sharp-interface level-set method is presented for simulating the growth and collapse of a compressible vapor bubble. The interface tracking method is extended to include the effects of bubble compressibility and liquid-vapor phase change by incorporating the ghost fluid method to efficiently implement the matching conditions of velocity, stress and temperature at the interface. The numerical results for one-dimensional compressible flows and spherical bubble growth show good agreement with the exact solutions. The level-set method is applied to investigate the effects of phase change, ambient temperature and wall on the compressible bubble growth and collapse.  相似文献   
8.
太空探索已成为人类共同目标,重返月球、载人火星等人类历史上的重大里程碑任务已逐步实施。如何实现地外极端环境下人类生存和发展已成为载人太空探索的基本能力和基础技术。由南京大学和钱学森空间技术实验室提出的地外人工光合成技术,模拟地球绿色植物的自然光合作用,利用密闭空间废弃资源或地外天体环境中丰富的资源,通过光电催化方法原位、加速、可控地将二氧化碳转化成为氧气和含碳燃料,大幅度降低载人航天器的物资供应需求,支撑可承受、可持续的载人深空探索。本文回顾了近年来国际航空航天领域利用二氧化碳转换生成氧气和碳氢燃料的现有方法,并深入探讨面向地外原位资源利用的人工光合成材料研究进展,期望深化对地外人工光合成材料与技术的认知,有力支撑载人航天发展。  相似文献   
9.
为了满足月球车视觉系统对检测障碍物检测的时效性和可靠性的需求,提出了一种基于平面约束和自适应惩罚参数的半全局立体匹配算法。首先,对极线校正后的两幅图像进行SIFT特征点提取与匹配,同时提取边缘特征;然后,利用匹配的SIFT特征点拟合空间平面,并根据平面估计左右图像所有像素点的视差搜索范围;最后,基于传统的半全局匹配算法,采用自适应惩罚参数的策略对左右图像进行立体匹配。实验结果表明:所提出的算法有效地降低了计算复杂度,其计算复杂度只有传统方法的19.9%,对于视差不连续区域以及遮挡区域都能够获得正确的匹配结果。较传统半全局匹配方法无论在速度还是匹配精度上都得到明显提高,为对立体匹配的实际应用奠定了基础。  相似文献   
10.
Construction of plasmon-based nanostructures is an effective way to enhance the photocatalytic activities of semiconductor photocatalysts for water-splitting. However, the synergistic effect of plasmon-related hot electrons and holes for water splitting in the plasmon-hybrid photocatalyst is rarely considered. Herein, we construct a plasmon-based Au/LaFeO3 composite photocatalyst to investigate the complex roles of hot electrons and holes for solar water splitting. Benefiting from the formation of Schottky junction and surface plasmon resonance effect of the Au nanoparticles, the synthesized photocatalyst exhibits an excellent photocatalytic activity for each half-reaction of water splitting, and the rates for H2 and O2 generation are obtained as high as 202 μmol g−1 h−1 and 23 μmol g−1 h−1, respectively. Moreover, an in-depth investigation reveals that the improved hydrogen evolution is caused by the hot electron injection from Au to LaFeO3, and the hot holes in Au induced by the separation of hot charges can initiate the water oxidation directly on the surface of gold. Thus, this work provides a new insight into the synergistic effect of plasmon-related hot electrons and holes for boosting the photocatalytic reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号