首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1841篇
  免费   132篇
  国内免费   26篇
电工技术   25篇
综合类   18篇
化学工业   537篇
金属工艺   99篇
机械仪表   26篇
建筑科学   4篇
矿业工程   2篇
能源动力   126篇
轻工业   6篇
水利工程   1篇
石油天然气   2篇
武器工业   2篇
无线电   574篇
一般工业技术   473篇
冶金工业   19篇
原子能技术   7篇
自动化技术   78篇
  2024年   4篇
  2023年   205篇
  2022年   95篇
  2021年   118篇
  2020年   132篇
  2019年   79篇
  2018年   57篇
  2017年   152篇
  2016年   205篇
  2015年   197篇
  2014年   129篇
  2013年   74篇
  2012年   79篇
  2011年   48篇
  2010年   54篇
  2009年   38篇
  2008年   20篇
  2007年   54篇
  2006年   67篇
  2005年   49篇
  2004年   22篇
  2003年   25篇
  2002年   31篇
  2001年   26篇
  2000年   17篇
  1999年   22篇
排序方式: 共有1999条查询结果,搜索用时 15 毫秒
1.
Two types of transparent Y2O3 ceramics without including large scattering sources such as residual pores, one with very high optical homogeneity (type A) and another one with slightly insufficient optical homogeneity (type B), are purposely prepared, and their optical properties are investigated and compared qualitatively and quantitatively. Type A ceramic exhibits transmittance characteristics with very low internal loss in the visible to infrared wavelength region, while type B ceramic is inferior in various optical performances especially in the short (visible) wavelength region. In type B ceramic, birefringence occurs due to optical inhomogeneity in the visible region, resulting in a decrease in the extinction ratio. Non-uniform refractive index distribution is also observed in the Schlieren image of type B ceramic, hence the laser beam quality through that material is degraded. This study proved the importance of optical homogeneity of transparent ceramics and clarified the problems in actual applications.  相似文献   
2.
In this work, Zn-Ni co-modified LiMg0.9Zn0.1-xNixPO4 (x = 0–0.1) microwave dielectric ceramics were fabricated using a solid state synthesis route. Rietveld refinement of the XRD data revealed that all ceramic samples have formed a single phase with olivine structure. SEM images showed that the samples have a dense microstructure, that agrees with the measured relative density of 97.73 %. Based on the complex chemical bond theory, Raman and infrared reflectance spectra, we postulate that εr is mainly affected by the ionic polarizability, lattice and bond energy, while P-O bond plays a decisive role in Q×f and τf value. Optimum properties of Q×f ~ 153,500 GHz, εr ~ 7.13 and τf ~ ?59 ppm/°C were achieved for the composition LiMg0.9Zn0.06Ni0.04PO4 sintered at 875 ℃ for 2 h. This set of properties makes these ceramics an excellent candidate for LTCC, wave-guide filters and antennas for 5 G/6 G communication applications.  相似文献   
3.
《Ceramics International》2019,45(13):15854-15859
Nowadays, transition metal sulfide (TMS), especially for spinel crystal structure (AxB3-xS4), have been proved to be a promising electromagnetic (EM) absorber if been used to deal with the severe electromagnetic pollution. However, EM performance degradation and absorption layer thickness-decreasing at present remains a big challenge, owning to the poor EM attenuation ability. To overcome this barrier, herein we reported a NixCo3-xS4 (x = 0, 0.3, 0.6, 1.0) absorber with hollow sphere structure to realize a good EM performance with a thinner matched thickness (<1.5 mm). The average sizes of these NixCo3-xS4 distributed in 450–550 nm. The dielectric loss ability (ε'') can be boosted by tuning the molar ratio of Ni/Co, which attributes to EM performance. Additionally, hollow structure would lead to the electromagnetic multi-reflection, also benefited to EM performance. The results demonstrated that the maximum qualified absorption bandwidth (fE) of 3.8 GHz can be achieved for the Ni0·3Co2·7S4 sample when specimen thickness only equals to 1.3 mm.  相似文献   
4.
Full-fluorescence organic light-emitting diodes (FOLEDs) with low cost and high efficiency are imperious demands for commercial process in flat panel display and lighting products. We fabricated a series of FOLEDs employing C545T and DCJTB as doped dyes and different exciplex blends as cohosts. The results proved that reverse intersystem crossing (RISC) efficiency of exciplex cohost has a significant effect on the device performance. Devices with TAPC:PIM-TRZ as cohost which possessed the highest RISC efficiency showed the best results. The green FOLEDs exhibited the maximum external quantum efficiencies (EQEs) approaching to 20%, the red FOLEDs exhibited EQEs over 10% and all the EQE roll-offs are less than 10% at 1000 cd m−2, which are among the best reported results so far, suggesting these exciplex cohosts are promising for FOLEDs.  相似文献   
5.
《Ceramics International》2020,46(6):7388-7395
In this study, the effect of ZnO seed layer on the growth of uniform CdS nanostructures was investigated using chemical bath deposition technique. Besides, the influence of molar concentration of reagents on the surface morphology, structural and optoelectrical properties of the deposited CdS thin films were examined. The CdS nanostructures were grown on bare glass and ZnO/glass substrates with different reagent molar concentrations. The results indicated an improvement in the homogeneity and uniformity of the grown CdS nanostructures on ZnO seed layer which can be due to the low lattice mismatch between ZnO and CdS structures. The CdS/ZnO samples were optimized by changing the molar concentration of reagents. A three–dimensional intersecting vertical nanosheet morphology with hexagonal structure was obtained when modified chemical concentration of 0.5 M was applied. The XRD pattern of CdS nanosheets indicated the hexagonal phase of CdS which were strongly orientated along (002) plane. The elevated intensity of dominant peak related to this sample confirmed the improved crystal quality of this CdS nanostructure comparing to the other samples. The UV–Vis spectrum demonstrated a high absorption coefficient for CdS intersecting nanosheets which might be due to the high specific surface area and light trapping behavior of this sample. The photoluminescence study also showed an improvement in optical properties of optimized CdS nanostructures. In order to study the optoelectrical properties of CdS nanostructures, metal–semiconductor–metal photodetectors were fabricated with different CdS samples and their current–voltage characteristics were analyzed. The results indicated an enhancement in photosensitivity, responsivity, and speed of photodetectors based on optimized CdS nanostructures.  相似文献   
6.
Single crystal sapphire was synthesized by chemical transport of Al-O generated by the reaction of polycrystalline Al2O3 ceramic and carbon. Using C-axis oriented polycrystalline Al2O3 ceramics as a seed crystal in the deposition temperature range, a C-axis sapphire crystal (Φ5xL35 mm) was grown at a temperature range of 700–1000 °C, and the growth rate in the C-axis direction was about 3.5 mm/h. The transmittance in the visible to infrared region of the synthesized sapphire is a theoretical value (transmission loss is lower than 0.1 %/cm), and the absorption edge was less than 200 nm (the band gap is 6.2 eV), which is shorter than the absorption edge (240 nm) of the commercially available single crystal (band gap 5.2 eV) synthesized by the Czochralski method. The dislocation density in this material was extremely low, and it was confirmed by lattice image observation that it was a high-quality single crystal with very few defects.  相似文献   
7.
《Ceramics International》2020,46(9):13442-13448
In current study, gadolinium oxide was heterogeneously formed on the surface of iron oxide nanoparticles and further modified with dextrose capping agent to be used in biomedical applications, especially for contrast enhancement in MR images. First, two types of iron oxide nanoparticles were prepared at 25 and 80 °C via simple coprecipitaion method. Then, gadolinium oxide nanoparticles were synthesized through a consecutive precipitation process on previously formed iron oxide seeds in an aqueous media and subsequent annealing at 300 °C. Finally, dextrose was used as capping agent to stabilize nanocomposites in a colloidal suspension. X-ray diffraction (XRD), Scanning and Transmission electron microscopy, Dynamic Laser Scattering (DLS), Fourier-Transform Infrared Spectroscopy (FTIR), and Magnetometery (VSM) techniques were employed for nanocomposites investigation and MTT-assay method used for viability assessment of colloidal samples. Measurements based on Scherrer equation from XRD patterns showed that increasing coprecipitation temperature resulted bigger iron oxide crystallites. The iron oxide crystallite size was increased from 15.1 to 28.1 nm. Precipitation process led to gadolinium oxide formation with 30.7 and 38.8 nm crystallite sizes, respectively. TEM images revealed that iron oxide agglomerates were encapsulated in gadolinium oxide surroundings. Hydrodynamic size of the coated nanoparticles with dextrose was 208 and 247 nm. In VSM examinations, nanocomposites did not display coercive field and the saturation magnetization was 1.93 emu/g. MTT-assay results showed 80% viability in 285 μg nanocomposites containing 96.9 μg [Fe] and 11.4 μg [Gd].  相似文献   
8.
《Ceramics International》2020,46(17):27219-27225
Designing double metal-dielectric (cermet) solar selective absorber coatings (SSACs) often requires complex co-sputtering techniques with multiple targets. This inevitably limits the simple and low-cost industrial fabrication. Here, we develop novel nano-multilayered MoOx-based SSACs by simple and stable one-step reactive magnetron sputtering process using single molybdenum target. The proposed multilayer SSACs exhibit good solar absorptance of 0.93 and low thermal emittance of 0.06. Owing to the temperature-induced oxygen diffusion and oxidation phenomenon the as-sputtered SSACs have a poor thermal tolerance under air atmosphere, and after annealing at 200 °C for 150 h, the resulting absorptance is diminished from 0.93 to 0.90. However, the optical performance of the annealed SSAC is relatively stable in high-vacuum environment, even after annealing at 450 °C for 200 h, it still displays an ideal spectral selectivity of 0.92/0.07. With above properties, the resulting MoOx-based SSAC is a promising absorber for enduring thermal harvesting in solar vacuum collectors.  相似文献   
9.
Slewa  Lary H.  Abbas  Tariq A.  Ahmed  Naser M.  Hassan  Z. 《SILICON》2020,12(7):1761-1768
Silicon - Porous silicon (PSi) samples were prepared via electroless stain etching of silicon substrates in HF using V2O5 as an oxidant and ethanol as a surfactant for different etching times. The...  相似文献   
10.
《Ceramics International》2018,44(18):22632-22637
V-doped semi-insulating (VDSI) SiC crystal is a promising substrate for high-frequency electronic devices achieved using GaN epitaxial films. However, V doping in a SiC crystal is difficult to control owing to the different sublimation temperatures of VC and SiC. The amount of V changes depending on the growth sequence, which has been a significant concern in VDSI SiC substrates in terms of wafer reliability.In this study, therefore, we aimed to synthesize a single source by vaporizing Si, C, and V under the same conditions to improve the doping issue in VDSI SiC. We synthesized V-doped SiC powder as the starting material for VDSI SiC substrate based on thermodynamic modeling, and the synthesized powder was used to grow a VDSI SiC crystal via physical vapor transport.Finally, considering the homogeneous V concentration in the grown crystal, the synthesized V-doped SiC was observed to be effective to grow VDSI SiC independent of the growth sequence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号