首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   57篇
  国内免费   49篇
电工技术   1篇
综合类   2篇
化学工业   74篇
金属工艺   8篇
机械仪表   8篇
建筑科学   1篇
能源动力   11篇
无线电   177篇
一般工业技术   47篇
冶金工业   2篇
原子能技术   2篇
自动化技术   9篇
  2023年   16篇
  2022年   16篇
  2021年   9篇
  2020年   12篇
  2019年   17篇
  2018年   23篇
  2017年   31篇
  2016年   21篇
  2015年   19篇
  2014年   17篇
  2013年   16篇
  2012年   22篇
  2011年   6篇
  2010年   15篇
  2009年   15篇
  2008年   5篇
  2007年   44篇
  2006年   14篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  1999年   1篇
排序方式: 共有342条查询结果,搜索用时 16 毫秒
1.
In this paper, a new kinetic model considering both oxidation and volatilization kinetics is established and applied to analyze the oxidation of SiC-B4C-xAl2O3 ceramics and other systems in various oxidation conditions. The effects of diffusion area and volume changes during the oxidation process are considered in this model. The physical meaning of each parameter in this model is explicit and simple. According to this model, the diffusion coefficient of species and the corresponding diffusion activation energy are easily available. The practicability of this model is well verified by the experimental data of SiC-B4C-xAl2O3 and other systems oxidized under different conditions. In addition, the practice shows that the model is applicable not only to the systems where oxidation and volatilization coexist, but also to the system where only oxidation plays a major role. We hope the model proposed in this work can be used in other materials with more complex environments.  相似文献   
2.
The activity of transition metal dichalcogenides (TMD) toward hydrogen evolution reaction (HER) derives from the active sites at the edges, but the basal surface still remain catalytic insert. Herein, ultrathin MoSSe alloy nanosheets array on multiwalled carbon nanotubes (MWCNTs) to form a core shell structure via a simple solvothermal process. These three-dimensional (3D) MoSSe hybrids show a high activity in hydrogen evolution reaction (HER) with a small Tafel slope of 38 mV dec−1 and a low overpotential of 102 mV at 10 mA cm−2. In addition, their HER activity remains remarkably stable without significant decay after 100 h polarization. Such superior catalytic HER activity springs from the 3D hierarchical heterostructure, which is abundant of catalytic edge sites, and the alloy effect between S and Se, which will create huge defects and strain to form vacancy sites on the basal plane. This strategy may open a new avenue toward the development of nonprecious high-performance HER catalysts.  相似文献   
3.
Manipulating the critical switching field between antiferroelectric (AFE) state and ferroelectric (FE) is an important concept for tuning the energy storage performance of AFEs. As one of the lead-based AFE systems, Pb(Lu1/2Nb1/2)O3 promises high potential in the miniaturization of pulsed power capacitors, but the extremely high critical switching field and low induced saturated polarization demonstrate severe drawbacks with respect to temperature stability and flexibility. Here, A-site Ba2+ doping engineering is used to effectively reduce the critical switching field and improve the saturated polarization in BaxPb1-x(Lu1/2Nb1/2)O3 (0.01 ≤ x ≤ 0.08, abbreviated as xBa-PLN) ceramics. We found the AFE-FE phase transition can be occurred at 80ºC with a high energy storage density of 4.03 J/cm3 for Ba0.06Pb0.94(Lu1/2Nb1/2)O3 ceramic. Our results show that Ba2+ additions destroy the antiparallel structure of AFE phase, and finally reduce the critical switching field, demonstrating a potential alternative to modulate the energy storage performance of AFEs.  相似文献   
4.
Ideal relaxor antiferroelectrics (RAFEs) have high field-induced polarization, low remnant polarization and very slim hysteresis, which can generate high recoverable energy storage Wrec and high energy storage efficiency η, thus attracting much attention for energy storage applications. True RAFEs, on the other hand, are extremely rare, and the majority of them contain environmentally hazardous lead. In this work, we use a viscous polymer rolling process to synthesize a novel and eco-friendly 0.65Bi0.5Na0.4K0.1TiO3-0.35[2/3SrTiO3-1/3Bi(Mg2/3Nb1/3)O3] (BNKT-ST-BMN) dielectric material, which possesses a very typical RAFE-like characteristic. As a result, this material has a high Wrec of 4.43 J/cm3 and a η of 86% at an electric felid of 290 kV/cm, as well as a high thermal stability of Wrec (>3 J/cm3) over a wide range of 30–140 °C at 250 kV/cm. Our findings suggest that the BNKT-ST-BMN material could be a potential candidate for use in energy storage pulse capacitors.  相似文献   
5.
6.
ASTRO-H is a Japanese X-ray astronomy satellite, scheduled to be launched in fiscal year 2015. The mission includes a soft X-ray spectrometer instrument (SXS), which contains an X-ray micro calorimeter operating at 50 mK by using an adiabatic demagnetization refrigerator (ADR). The heat sink of the ADR is superfluid liquid helium below 1.3 K. The required lifetime of the superfluid helium is 3 years or more. In order to realize this lifetime, we have improved the thermal performance from the engineering model (EM) while maintaining the mechanical performance. Then, we have performed a thermal test of the flight model (FM). The results were that the heat load to the helium tank was reduced to below 0.8 mW in the FM from 1.2 mW in the EM. Therefore, the lifetime of the superfluid helium is more than 3 years with 30 L of liquid helium.In this paper, the thermal design and thermal test results are described.  相似文献   
7.
Utilizing synergetic effect of different ingredients is an important strategy to design new multi-functional composites. In this work, high-strength graphene oxide and conductive polyaniline were selected to dope into divinylbenzene to fabricate a new type carbon fiber reinforced polymer laminates, where a cooperative improvement of through-thickness electrical conductivity and interlaminar shear strength was observed. With addition of 15 wt% of PANI-GO at the optimized weight ratio of 60:1 in the CF/DVB-PANI-GO, 150% enhancement of the electrical conductivity compared to the CF/DVB-PANI, and 76% enhancement of the ILSS compared to the CF/DVB-GO were realized. Our laminates reach 66% in ILSS of that for the conventional CFRP made of epoxy, but the former features about 103 times higher AC conductivity. The mechanism for such a synergic enhancement for both electrical and mechanical performance was investigated by rheology measurement and scanning electron microscopy, where uniform 3-D network formed by PANI/GO has been clearly observed.  相似文献   
8.
In this study, a novel hybrid copolyimide was synthesized from copolyamic acid solutions (PAAs) obtained by the reaction between bis(3-aminophenoxy-4-phenyl)phenylphosphine oxide (m-BAPPO), 3,3′-diaminodiphenyl sulfone (DDS) and 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA), followed by thermal imidization. Hybrid materials containing 5% SiO2 were synthesized by sol–gel technique. The polyimide–silica hybrids were characterized by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Thermogravimetric analysis showed that the weight loss of hybrids is shifted to the higher temperature compared to the neat copolyimide. The contact angle measurements confirmed the hydrophobic surface of hybrids. Moreover, the gas permeability measurements were also done to take a step for forthcoming gas separation studies. The tensile modulus and strength of the copolyimides are good.  相似文献   
9.
A new type of high-temperature-resistant SiZrBOC ceramics was prepared by sol-gel method using polymethyl-hydro siloxane (PMHS), boric acid (B(OH)3), and n-propyl zirconate (Zr(OPr)4) as raw materials. After high-temperature pyrolysis, the SiZrBOC precursor was transformed into a crystalline ceramic material with a yield of 89.5 wt%. Fourier infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were applied to characterize the polymer-ceramic conversion process and thermal behavior of ceramic precursors. According to the results, the addition of boron elements led to the formation of Si-O-B links in the system. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to study the phase composition and microstructure of SiZrBOC ceramics. Finally, the oxidation test at 1200 °C revealed that SiZrBOC ceramics with a boron/zirconium molar ratio of 2.5:1 exhibited the best oxidation resistance at a weight gain of 0.4 wt% only.  相似文献   
10.
We report, for the first time to our knowledge, on the spectroscopic properties and continuous-wave laser performance of Yb0.14:Y0.77Gd0.09Ca4O(BO3)3, a mixed rare earth calcium oxyborate Yb-ion crystal. Under simple end-pumping conditions with a 976-nm diode, efficient CW laser operation was demonstrated at room temperature, producing an output power of 14.1 W at 1084.4 nm with an optical-to-optical efficiency of 48%; while operating around 1045 nm, the laser could generate an output power as high as 23.0 W, with optical-to-optical and slope efficiencies amounting, respectively, to 57% and 70% with respect to incident pump power. The polarized absorption and emission cross sections are also presented. The impressive results demonstrated reveal the great potential of these mixed oxyborates in developing new promising Yb-ion laser crystals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号