首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   4篇
  国内免费   3篇
电工技术   1篇
化学工业   110篇
金属工艺   18篇
机械仪表   6篇
建筑科学   2篇
矿业工程   1篇
能源动力   51篇
轻工业   2篇
水利工程   2篇
石油天然气   1篇
无线电   49篇
一般工业技术   71篇
冶金工业   2篇
原子能技术   1篇
自动化技术   24篇
  2023年   43篇
  2022年   14篇
  2021年   8篇
  2020年   22篇
  2019年   17篇
  2018年   7篇
  2017年   22篇
  2016年   27篇
  2015年   20篇
  2014年   20篇
  2013年   16篇
  2012年   16篇
  2011年   7篇
  2010年   13篇
  2009年   13篇
  2008年   14篇
  2007年   14篇
  2006年   16篇
  2005年   5篇
  2004年   1篇
  2003年   6篇
  2002年   4篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
排序方式: 共有341条查询结果,搜索用时 15 毫秒
1.
2.
In this paper, a novel Dy2O3-Al2O3-SiO2 (DAS) glass ceramic was designed and prepared for joining zirconia toughened alumina (ZTA) ceramic. The crystallization, thermal expansion behavior and wetting behavior of the DAS glass filler were studied. The effect of cooling rate and joining temperature on the microstructure and flexural strength of joints was investigated. The results show that slow cooling rate (15 °C/min) leads to crystallization of brazing seam, which causes the formation of pores in the joints due to the large density difference between the glass and the crystalline phases. The dissolution of ZrO2 from ZTA substrate into the filler during joining process improves the mismatch of the coefficient of thermal expansion (CTE) between the brazing seam and substrate. The maximum flexural strength of 535 MPa is obtained when the joining temperature and cooling rate are 1475 °C and 50 °C/min, respectively.  相似文献   
3.
Previous studies indicate that the properties of graphene oxide (GO) can be significantly improved by enhancing its graphitic domain size through thermal diffusion and clustering of functional groups. Remarkably, this transition takes place below the decomposition temperature of the functional groups and thus allows fine tuning of graphitic domains without compromising with the functionality of GO. By studying the transformation of GO under mild thermal treatment, we directly observe this size enhancement of graphitic domains from originally ≤40 nm2 to >200 nm2 through an extensive transmission electron microscopy (TEM) study. Additionally, we confirm the integrity of the functional groups during this process by a comprehensive chemical analysis. A closer look into the process confirms the theoretical predicted relevance for the room temperature stability of GO and the development of the composition of functional groups is explained with reaction pathways from theoretical calculations. We further investigate the influence of enlarged graphitic domains on the hydration behaviour of GO and the catalytic performance of single atom catalysts supported by GO. Additionally, we show that the sheet resistance of GO is reduced by several orders of magnitude during the mild thermal annealing process.  相似文献   
4.
Two-dimensional Ruddlesden–Popper (2DRP) metal halides have attracted extensive attention in photovoltaic applications due to their high stability, low self-doping levels and long-lived free carriers. Among them, (PA)2(MA)2Pb3I10 presents itself as a superior candidate, demonstrating greater moisture resistance and improved heat and light stability over many other 2DRP metal halides. This study takes on the opportunity to search for lead-free alternatives by investigating the optoelectronic and carrier transport properties, as well as the photovoltaic performance of such (PA)2(MA)2M3I10 type metal halides as the photovoltaic absorber, where M = Pb, Cd, Cr, Cu, Ge, Mn, Ni, Sn, Yb, Zn. Our results indicate that the bandgap of (PA)2(MA)2M3I10 can be tuned to the optimum photovoltaic application range of 0.9–1.6 eV, along with improved optical and enhanced photo-response capacity, when Sn, Cd, Mn, Ge, and Zn are used to replace Pb. In particular, (PA)2(MA)2Zn3I10 possesses the largest Stokes shift and Huang-Rhys factor, while showing the best photoluminescence tendency and broadest emission nature. (PA)2(MA)2Ge3I10 displays the most excellent of carrier transport capacities with high mobilities of 73 cm2 V−1 s−1 and 43 cm2 V−1 s−1 for electron and hole carriers, respectively, which are even comparable to that of 3D counterparts. Furthermore, (PA)2(MA)2Zn3I10 is predicted to have the highest power conversion efficiency of 23.36% based on an empirical energy loss (0.5 eV), which is quite close to the Shockley–Queisser limit, thereby featuring it as a suitable absorber for photovoltaic applications. These findings shed light on new strategies for designing and developing lead-free 2DRP metal halides targeted at future applications in photovoltaic solar cell devices.  相似文献   
5.
Laser melting is known to be capable in initiating thorough evolution in microstructure and bringing novel functional performance in metals. But realization of this potential in ceramics only reaches a preliminary stage that needs further investigation. Here we demonstrate zirconia, traditionally an insulative ceramic at low temperature, could be transformed into an electronic conductor with the conductivity on order of 10−3 S⋅cm-1 at room temperature by a simple laser melting process without inducing metallic phases. Transmission electron microscopy and ab-initio simulation show that oversaturated oxygen vacancies, together with their ordered metastable distribution along <001 > , are introduced during this non-equilibrium process, and result in a clear defect level significantly narrowing bandgap to less than 1 eV, leading to the considerable electronic conductivity. These results identify a strategy of utilizing this non-equilibrium method in oxide ceramics to realize some unconventional performances determined by metastable structure thoroughly altered down to atomic level.  相似文献   
6.
In the present work, transparent Y2O3 ceramics were prepared via colloidal processing method using ZrO2-coated nano-sized Y2O3 powders. The chemical precipitation method was adopted for the coating of Y2O3 raw powder. The evolution of the coated-ZrO2 layer upon calcination was studied. The rheological behaviors of the slurries of Y2O3 powders coated with different content of ZrO2-additive were investigated. The pHIEP of ZrO2-coated Y2O3 powders shows intermediate values between that of raw Y2O3 and ZrO2 powders. As the ZrO2-coating concentration increased from 0 to 5.0 at%, the magnitude of the negative zeta potential at pH > pHIEP shows a general trend of increment, whereas it decreased at pH < pHIEP. The viscosity decreases pronouncedly with the increase of ZrO2 content from 0.5 at% to 3.0 at%. The suspensions with low viscosity and high stability was achieved for a solid loading of 35.0 vol% using Y2O3 powders coated with 5.0 at% ZrO2. The dispersed suspensions were consolidated by centrifugal casting method and the green bodies shown improved homogeneity. Transparent Y2O3 ceramics were fabricated by vacuum sintering at 1800 ℃ for 5 h. Transmittance at wavelength 800 nm (1.0 mm thick) reached 80.8%, close to the theoretical value of Y2O3.  相似文献   
7.
5 at.% Yb:Y2O3 transparent ceramics were fabricated using vacuum sintering plus HIP. The ceramics doped with 1 at.% ZrO2 as the sintering additive were densified at 1700 °C in vacuum followed by HIPing at 1775 °C, while those without sintering additives were densified at 1520 °C in vacuum followed by HIPing at 1450 °C. After sintering, both ceramics had relatively high in-line transmittance. However, during laser experiments, the ZrO2-doped Yb:Y2O3 (Zr-YbY) ceramics were photodarkened when irradiated by 940 nm pump light. The discoloration might be attributed to the formation of Zr3+ color centers during lasing. In contrast, no photodarkening effect was detected in the pure Yb:Y2O3 ceramics without sintering additives (P-YbY). The P-YbY ceramics exhibited much higher lasing efficiency (17%) than the Zr-YbY ceramics (9%). To our best knowledge, it is the first time that the photodarkening effect was detected in rare-earth doped sesquioxide laser ceramics.  相似文献   
8.
The marine microalgae Nannochloropsis oculata is a promising source of biofuel because of its high lipid content. For achieving high productivity of oil from microalgae, a high cell concentration before harvesting is beneficial. The present study investigated fed-batch cultures of N. oculata fed with vitamins and nutrient solutions and found that the biomass yield of N. oculata in the fed-batch culture was 1.25 times higher than that in batch culture. Fed-batch cultivation, especially at high illumination, decreased the inhibitory effect of high carbon dioxide (CO2) concentration on the microalgal growth. The specific growth rate was directly proportional to the light intensity in the CO2 environment. A light intensity of 40,000 Lux was able to achieve high specific growth rates in fed-batch cultivation at a CO2 volume fraction of 2%–15%. The tolerance of N. oculata to CO2 was enhanced by the daily feeding of nutrients in the fed-batch cultivation. At 2% CO2, a final cell density of about OD682 = 11.4 was achieved in the fed-batch culture in 30 days. Furthermore, a cell density of 14.4 g L−1 was obtained by outdoor fed-batch cultivation in 27 days.  相似文献   
9.
Manipulating the critical switching field between antiferroelectric (AFE) state and ferroelectric (FE) is an important concept for tuning the energy storage performance of AFEs. As one of the lead-based AFE systems, Pb(Lu1/2Nb1/2)O3 promises high potential in the miniaturization of pulsed power capacitors, but the extremely high critical switching field and low induced saturated polarization demonstrate severe drawbacks with respect to temperature stability and flexibility. Here, A-site Ba2+ doping engineering is used to effectively reduce the critical switching field and improve the saturated polarization in BaxPb1-x(Lu1/2Nb1/2)O3 (0.01 ≤ x ≤ 0.08, abbreviated as xBa-PLN) ceramics. We found the AFE-FE phase transition can be occurred at 80ºC with a high energy storage density of 4.03 J/cm3 for Ba0.06Pb0.94(Lu1/2Nb1/2)O3 ceramic. Our results show that Ba2+ additions destroy the antiparallel structure of AFE phase, and finally reduce the critical switching field, demonstrating a potential alternative to modulate the energy storage performance of AFEs.  相似文献   
10.
BiFeO3 thin films, specifically those fabricated by chemical solution deposition, suffer from severe leakage that hinder the acquirements of their intrinsic high polarizations and are thus normally not considered for use in practical electronics. The controlled fabrication of thin films with reduced leakage is of vital importance. In the present work, BiFeO3 films (with thicknesses below ~300 nm), assisted by an interfacial amorphous layer, were fabricated by chemical solution deposition on Pt/Ti/SiO2/Si substrates. This facile method facilitates the growth of the mentioned amorphous layer, and the ferroelectric properties of the obtained films were greatly enhanced. The conducting mechanisms of both types of thin films were systematically investigated to understand the impact of the designed interface. The results not only advance the potential use of BiFeO3 thin films in electromechanical devices but also promote chemical solution deposition as a promising methodology for the fabrication of high-quality ferroelectric films with compressed leakage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号