首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1263篇
  免费   67篇
  国内免费   27篇
电工技术   14篇
综合类   1篇
化学工业   465篇
金属工艺   178篇
机械仪表   71篇
建筑科学   3篇
矿业工程   1篇
能源动力   33篇
轻工业   2篇
水利工程   2篇
石油天然气   6篇
武器工业   107篇
无线电   66篇
一般工业技术   194篇
冶金工业   11篇
原子能技术   1篇
自动化技术   202篇
  2023年   72篇
  2022年   85篇
  2021年   73篇
  2020年   90篇
  2019年   79篇
  2018年   53篇
  2017年   71篇
  2016年   50篇
  2015年   72篇
  2014年   107篇
  2013年   125篇
  2012年   175篇
  2011年   54篇
  2010年   49篇
  2009年   63篇
  2008年   38篇
  2007年   68篇
  2006年   20篇
  2005年   13篇
排序方式: 共有1357条查询结果,搜索用时 15 毫秒
1.
To repair the damaged SiC coated C/C composites, a double-layer coating including a SiO2-Nd2O3 external layer (∼60 μm) and a Si-SiC inner layer (∼240 μm) was prepared by a slurry-based laser cladding technique, and the laser-ablation tests under two heat fluxes (23.89/39.81 MW m−2) were performed. The spectrophotometer, X-ray diffraction, scanning electron microscopy and 3D profilometer were used for characterization. For avoiding the secondary damage of laser-ablation, the laser-reflection of the repaired area was enhanced, which was conducive to the mitigation of mass and linear ablation. Combined with Finite Element Analysis, by raising the reflectivity, the surface and back temperature of samples could be reduced greatly by 1224 K and 983 K respectively, and plenty of ablation reactions could be avoided. Therefore, the SiO2-Nd2O3 coating possessed an excellent laser-ablation resistance and protected the C/C substrates from thermal damage and oxidation effectively.  相似文献   
2.
针对5G超密网中移动设备计算能力不足、频谱资源有限的问题,提出了一种基于非正交多址接入(NOMA)的计算迁移与带宽分配策略。首先,对系统模型进行了分析,并在此基础上以最小化设备计算代价为目标对所研究的问题进行形式化定义;然后,将该问题分解成设备的计算迁移、系统的带宽分配和设备的分组匹配三个子问题,并利用模拟退火、内点法和贪心算法对这三个子问题进行求解;最后,通过联合优化算法对上述子问题进行交替性迭代求解,最终获得最优计算迁移和资源分配策略。仿真结果表明,所提出的联合优化策略不但优于传统的正交多址接入(OMA)方式,而且能获得比平均分配带宽的NOMA技术更低的设备计算代价。  相似文献   
3.
Materials capable of oxidizing in a protective manner at ultrahigh (>1700 °C) temperatures are needed to push beyond this barrier defined by SiC. Although possessing attractive mechanical properties and oxidation resistance, SiC-based materials are ultimately temperature limited by the melting point of SiO2. The vast array of ultra-high and high temperature ceramic literature indicates the majority of these materials, like borides, carbides, MAX-phases, and high-entropy ceramics, fall woefully short regarding oxidation resistance. However, for specific applications, like low-orbit aeropropulsion, high ballistics coefficient atmospheric re-entry, and hypersonic cruise, there are a few promising materials. In the present review, oxidation criteria are gathered to build application specific heuristics and are then applied to a multitude of ultra-high temperature ceramics to gauge material efficacy. Discussion of oxidation kinetics, mechanisms and reaction products is offered for each material, identifying strengths, weaknesses, and the remaining gaps in our knowledge.  相似文献   
4.
In order to solve the challenge of recyclability of tantalum substrates in high temperature oxidation environments, a novel MoSi2-WSi2-HfSi2-TiSi2 composite ceramic coating containing an Nb interlayer was prepared on the surface of tantalum substrate by a three-step method. The mix ceramic silicide coating exhibited superior performance and effective protection for 10.2 h at 1800 °C, possibly due to the formation of an outer SiO2-HfO2-HfSiO4 composite oxide film with low oxygen permeability, moderate viscosity and thermal expansion coefficient, as well as good self-healing ability. Furthermore, the coating successfully passed 537 thermal cycles from room temperature to 1800 °C. The presence of Nb interlayer significantly mitigated the thermal mismatch between the ceramic coating and the tantalum substrate, and the bidirectional diffusion of Nb element during the high temperature oxidation and thermal shock process further reduced the tendency of the coating to crack.  相似文献   
5.
To tackle the dissolution problem of boron carbide particles in silicon infiltration process, carbon-coated boron carbide particles were fabricated for the preparation of the reaction-bonded boron carbide composites. The carbon coating can effectively protect the boron carbide from reacting with liquid Si and their dissolution, thus maintaining the irregular shape of boron carbide particles and preventing the growth of boron carbide particles and reaction formed SiC regions. Furthermore, the nano-SiC particles, originated from the reaction of the carbon coating and the infiltrated Si, uniformly coated on the surfaces of boron carbide particles, thus forming a ceramic skeleton of the nano-SiC particles-coated and -bonded boron carbide particles. The Vickers hardness, flexural strength and fracture toughness of the composites can be increased by 26 %, 45 %, and 37 % respectively, by using carbon-coated boron carbide particles as raw materials.  相似文献   
6.
Unidirectional (UD) silicon carbide (SiC) fiber-reinforced SiC matrix (UD SiCf/SiC) composites with CVI BN interphase were fabricated by polymer infiltration-pyrolysis (PIP) process. The effects of the anisotropic distribution of SiC fibers on the mechanical properties, thermophysical properties and electromagnetic properties of UD SiCf/SiC composites in different directions were studied. In the direction parallel to the axial direction of SiC fibers, SiC fibers bear the load and BN interphase ensures the interface debonding, so the flexural strength and the fracture toughness of the UD SiCf/SiC composites are 813.0 ± 32.4 MPa and 26.1 ± 2.9 MPa·m1/2, respectively. In the direction perpendicular to the axial direction of SiC fibers, SiC fibers cannot bear the load and the low interfacial bonding strengths between SiC fiber/BN interphase (F/I) and BN interphase/SiC matrix (I/M) both decrease the matrix cracking stress, so the corresponding values are 36.6 ± 6.9 MPa and 0.9 ± 0.5 MPa?m1/2, respectively. The thermal expansion behaviors of UD SiCf/SiC composites are similar to those of SiC fibers in the direction parallel to the axial direction of SiC fibers, and are similiar to those of SiC matrix in the direction perpendicular to the axial direction of SiC fibers. The total electromagnetic shielding effectiveness (EM SET) of UD SiCf/SiC composites attains 32 dB and 29 dB when the axial direction of SiC fibers is perpendicular and parallel to the electric field direction, respectively. The difference of conductivity in different directions is the main reason causing the different SET. And the dominant electromagnetic interference (EMI) shielding mechanism is absorption for both studied directions.  相似文献   
7.
The influences of the SiC infiltration and coating on the compressive mechanical behaviours of 2D C/SiC composites were determined up to 1600 °C at 0.001 and 1000/s strain rates in argon and air. In addition, the failure mechanisms responsible for the compressive mechanical behaviours were elucidated through in-situ observation and micro-analysis-based methods. The 2D C/SiC composite compressive strength was highly sensitive to temperature, loading rate, and oxidation, and was enhanced by the change in the thermal residual stress and decreased by oxidation. In argon, because of the extra infiltrated SiC matrix, SiC treated 2D C/SiC specimens exhibited higher compressive strengths and lower strain rate sensitivity factors than SiC untreated 2D C/SiC specimens. The SiC coating effectively improved the oxidation resistance of the 2D C/SiC composites in air, regardless of the temperature, strain rate, and oxidative damage-which depends on SiC coating, strain rate, and temperature.  相似文献   
8.
Composites based on hafnium carbide and reinforced with continuous naked carbon fiber with and without PyC interface were prepared at low temperature by precursor infiltration and pyrolysis and chemical vapor deposition method. The microstructure, mechanical property, cyclic ablation and fiber bundle push-in tests of the composites were investigated. The results show that after three times ablation cycles, the bending strength of samples without PyC interface decreased by 63.6 %; the bending strength of samples with PyC interface only decreased by 37.8 %. The force displacement curve of the samples with PyC interface presented a well pseudoplastic deformation state. The mechanical behavior difference of two kinds of composites was due to crucial function of PyC interface phase including protection of fiber and weakening of fiber/matrix interface.  相似文献   
9.
针对当前牙周探针在探诊力控制方面的不足,提出一种基于悬臂梁挠曲效应的差动电容式力感知牙周探针解决方案,设计了探针验证结构,建立了探诊力作用下具有不规则形状的探针工作尖的挠曲模型,导出了探诊力和差动电容之间的求解方程,并通过仿真和实验对模型与方程进行了验证。结果表明,所建立的探针工作尖挠曲模型与静应力仿真结果的最大相对误差不超过±4.5%,所设计的力感知牙周探针多次重复探诊力检测实验的标准差小于均值的0.1%,所导出的求解方程的计算值与实验数据之间趋向一致,以探诊力为拟合权重进行修正后全量程的平均偏差为2.49%,具备进一步产品开发的可行性。  相似文献   
10.
A novel composite reinforcement with horizontal multilayer "Spider web like" SiC nanowire networks and vertical interconnected "Z-pins like" SiC rods was designed and prepared by facile one-step figuration. The linear ablation rate of "Spider web like" SiC nanowire networks and "Z-pins like" SiC rods collectively reinforced C/C-ZrC-SiC composites at 2610 ± 20 ℃ was 0.4 ± 0.03 μm/s with a 74.19 % reduction. The improved ablation resistance was attributed to a denser gradient oxide layer composed of central ZrO2 layer, transitional ZrO2-SiO2 layer and marginal SiO2 layer generated under the initial sticky net effect from SiCnw networks and subsequent oxide compensation from "Z-pins like" SiC rods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号