首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  完全免费   2篇
  无线电   9篇
  2019年   6篇
  2018年   2篇
  2009年   1篇
排序方式: 共有9条查询结果,搜索用时 62 毫秒
1
1.
近年来,卷积神经网络(Convolutional Neural Network,CNN)在合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标分类中取得了较好的分类结果。CNN结构中,前面若干层由交替的卷积层、池化层堆叠而成,后面若干层为全连接层。全卷积神经网络(All Convolutional Neural Network, A-CNN)是对CNN结构的一种改进,其中池化层和全连接层都用卷积层代替,该结构已在计算机视觉领域被应用。针对公布的MSTAR数据集,提出了基于A-CNN的SAR图像目标分类方法,并与基于CNN的SAR图像分类方法进行对比。实验结果表明,基于A-CNN的SAR图像目标分类正确率要高于基于CNN的分类正确率。  相似文献
2.
李宝奇  贺昱曜  何灵蛟  强伟 《电子学报》2019,47(5):1058-1064
针对RGB图像具有丰富的色彩细节特征,红外图像对目标轮廓、尺寸、边界等外形特征有较高敏感度的特点,提出了一种非对称并行语义分割模型APFCN(Asymmetric Parallelism Fully Convolutional Networks).APFCN上路设计了一个卷积核尺寸非统一的五层空洞卷积网络来提取红外图像目标高层轮廓特征;下路沿用卷积加池化网络提取RGB图像三个尺度上的细节特征;后端将红外图像高层特征与RGB图像三个尺度的细节特征进行融合,并将4倍上采样后的融合特征作为语义分割输出.结果表明,APFCN在像素精度和交并比等方面均优于FCN(输入为RGB图像或红外图像),适用于背景一致下地面目标的语义分割任务.  相似文献
3.
以全卷积神经网络为基础设计图像语义分割算法框架,设计全局特征提取模块提升高维语义特征的提取能力,引入带孔卷积算子保留图像细节并提升分割结果的分辨率。通过搭建端到端的图像语义分割算法框架进行训练,在可见光数据集上对算法框架进行性能评估,结果表明,本文方法在可见光图像上取得良好的语义分割性能和精度。本文还在不借助红外数据标注训练的情况下对红外图像进行分割,结果证明本文方法在典型红外目标如行人、车辆的分割中也有较好的表现。  相似文献
4.
《红外技术》2019,(7):607-615
云检测作为遥感影像数据处理中的重要组成部分,在气候分析等各个方面起到了重要的作用。在云检测研究中,无论是应用广泛的阈值法或是基于模式识别的方法,以及在二者基础上的综合分析法。这些方法大多都依赖于单一类型的遥感数据来源,且在特征提取方面十分依赖先验知识,受主观影响较大。本文利用两种不同类型"风云"系列气象遥感卫星的可见光红外扫描辐射计(Visibleand Infrared Radiometer,VIRR)以及多通道扫描成像辐射计(Advanced Geosynchronous Radiation Imager,AGRI)数据,以全卷积神经网络为基础进行云检测,利用其自动提取深层隐含特征等特性,极大保留特征信息。最后结合全连接条件随机场模型进行云系边缘优化。实验结果表明,该算法分别应用于以上两种不同类型遥感影像数据,都较好地完成了云像元和非云像元的分离。  相似文献
5.
《无线电工程》2019,(7):575-580
传统分割方法只能对目标物体进行像素及语义信息解读并不能确定出目标的相对位置信息,另外室内环境复杂、光线不均匀、物体尺度较多且差异较大,尤其是对于小目标的分割效果不好。提出了基于全卷积神经网络的多任务语义分割算法,通过在检测框架添加用于预测与现有分支并行的对象像素级分割,实现了图像像素分割与目标物体检测相结合的多任务分割技术。加入RoI Align方法去除了量化操作,使原图中的像素和特征图中的像素完全对齐,消除了像素偏差、提高了精度,改进的梯度优化算法加速了模型收敛。通过mAP指标评估算法在公共数据集和实际应用场景中的有效性和广泛性,实验结果证明该方法的准确率明显高于传统的单任务分割算法。  相似文献
6.
强对流天气具有生命周期短、突发性强、破坏性 大等特点,并时常伴随着多种灾难性天气,给经济 发展、环境保护、人民生命财产安全等带来巨大威胁。目前目视解译的卫星云图对流云检测 方法依赖于人 的经验和知识,存在难于界定对流云团边界、云图的多光谱信息利用不足、小尺度对流云易 出现漏检与误 检等问题。本文基于FY-2G卫星的红外1通道云图及水汽与红外通道的亮温差,并借鉴U-ne t网络在图像 分割中所具有的精确定位能力,提出了一种新的多通道特征融合Y型全卷积网络的对流云检 测方法。该方 法将U-net网络改造成具有双路输入的Y型全卷积网络,并将红外1通道云图和亮温差图像分 别作为Y型 网络的两路输入,经过卷积及下采样处理,提取不同通道的特征信息;为了使网络具有精细 的目标检测能 力,Y型全卷积网络保留U-net网络的卷积及上采样结构,同时通过卷积和上采样将两个输 入分支不同层 次的特征图融合,从而实现一种多层次、多通道特征融合的对流云检测方法;不同层次特征 图的可视化及 其与融合特征图的对比,表明了所构造的Y型网络在利用云图不同通道特征信息中的有效性 。实验结果表 明,本文方法的对流云检测准确率为87.34%,精确率为89.77%,召回率为82.10%,F1-综合评价指标为 84.82%,各项性能指标均优于基于DeconvNet、U-net等传统网络模 型的对流云检测方法;与阈值法、亮温 差法和SVM等传统对流云检测方法相比,本文方法不仅在对流云边缘界定及小尺度对流云的 检测上具有明显优势,而且检测准确率和计算效率均得到了显著的提高。  相似文献
7.
针对腺体图像在自动分割过程中由于多尺度目标和信息丢失影响导致准确率降低的问题,文中采用了一种引入注意力模块的全卷积神经网络模型。该模型遵循编码器-解码器结构,在编码网络中用空洞残差卷积层代替原有的普通卷积层,并添加空洞金字塔池;再在解码网络中加入注意力模块,使模型输出高分辨率特征图,提高对多尺度目标的分割精度。实验结果表明,提出的网络模型参数少分割精度高,对腺体图像的平均分割精度高达89.7%,具有较好的鲁棒性。  相似文献
8.
在合成孔径雷达(SAR)图像目标检测中,由于场景杂波的复杂多变,对背景杂波统计模型估计难度增加,从而导致多数检测器容易受到背景杂波的干扰。针对如何避免场景杂波对目标检测干扰的问题,提出了一种基于全卷积神经网络的SAR目标检测模型。该模型将目标检测任务转化为像素分类问题,利用卷积神经网络对数据集中目标像素特征和背景杂波像素的先验信息进行自主学习,有效减少了虚警目标的数量;通过对目标及其阴影区域的联合检测,提高了目标的检测概率。对多个不同场景图像进行测试,实验结果表明提出的检测模型具有良好的检测性能和鲁棒性能,与传统恒虚警检测算法相比,在无需考虑背景杂波统计模型前提下有效降低了虚警概率。  相似文献
9.
董波  周燕  王永雄 《电子科技》2009,34(1):23-30
当前的显著性检测算法在复杂场景下难以分割出完整显著性区域以及锐利的边缘细节。针对这一问题,文中提出了一种新颖的特征融合算法。该方法利用全卷积神经网络获取多个层次粗糙的初始特征并结合特征金字塔结构对其深度解析。设计渐进结构感受野模块将特征转换至不同尺度的空间进行优化,实现特征的渐进融合与传递,有选择性地增强显著性区域。采用全局注意力机制消除背景噪声并建立显著性像素之间的长距离依赖,以提高显著性区域的有效性,突出显著性目标,再通过学习融合个层次特征得到显著图。综合实验表明,在绝对误差减小的情况下,F-measure指标远超出其他7种主流方法。所提的显著性模型综合了全卷积神经网络和特征金字塔结构的优点,结合文中设计的渐进结构感受野和全局注意力机制,使得显著图更接近真值图。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号