排序方式: 共有313条查询结果,搜索用时 54 毫秒
1.
2.
当前主流的图像检索方法采用的视觉特征,缺乏自主学习能力,导致其图像表达能力不强,此外,传统的特征索引方法检索效率较低,难以适用于大规模图像数据.针对这些问题,本文提出了一种基于卷积神经网络和监督核哈希的图像检索方法.首先,利用卷积神经网络的学习能力挖掘训练图像内容的内在隐含关系,提取图像深层特征,增强特征的视觉表达能力和区分性;然后,利用监督核哈希方法对高维图像深层特征进行监督学习,并将高维特征映射到低维汉明空间中,生成紧致的哈希码;最后,在低维汉明空间中完成对大规模图像数据的有效检索.在ImageNet-1000和Caltech-256数据集上的实验结果表明,本文方法能够有效地增强图像特征的表达能力,提高图像检索效率,优于当前主流方法. 相似文献
3.
随着毫米波器件的成熟,毫米波成像雷达已经应用于人体安检.但毫米波图像中违禁物体的定位仍然是一个艰巨的任务,这极大地限制了毫米波成像雷达的应用.文章将卷积神经网络(Convolutional Neural Network,CNN)应用于毫米波图像,自动定位毫米波图像中的违禁物体,如枪、刀等.利用滑动窗口在输入图像上滑动,并通过CNN得到各个子图块存在违禁物体的概率.图像块是相互交叠的,将各子图块的概率值累积起来,得到概率累积图.概率累计图反映了违禁物体的位置.由于CNN和概率累积图的应用,在实验中,该方法获得了很高的定位准确率,验证了该方法的有效性. 相似文献
4.
一种新的多尺度深度学习图像语义理解方法研究 总被引:1,自引:1,他引:0
如何在深度学习中融合 图像的多尺度信息,是基于深度学习的视觉算法需要解决的一个关键问题。本文提出一种基 于多尺度交替 迭代训练的深度学习方法,并应用于图像的语义理解。算法采用卷积神经网络(CNN)从原始 图像中提取稠密性特征 来编码以每个像素为中心的矩形区域,将多个尺度图像交替迭代训练,能够捕获不同尺度下 的纹理、颜色和 边缘等重要信息。在深度学习提取特征分类结果的基础上,提出了一种结合超像素分割的方 法,统计超像 素块的主导类别,来校正分类错误的像素类别,同时描绘出目标区域边界轮廓,完成最终的 语义理解。在Stanford Background Dataset 8类数据集上验证了本文方法的有效性,准确 率达到77.4%。 相似文献
5.
人工智能与语音识别技术 总被引:1,自引:0,他引:1
随着深度神经网络在大规模语音识别任务上获得显著效果提升,大数据的不断完善和涟漪效应的提出,在近十年,中国的人工智能也得到了快速发展。作为国内智能语音与人工智能产业领导者的科大讯飞率先将递归神经网络和卷积神经网络应用到真实在线系统中,并提出了全新的深度神经网络结构FSMN——讯飞构型。 相似文献
6.
7.
一种基于卷积神经网络的性别识别方法 总被引:1,自引:0,他引:1
采用人工智能进行性别识别时,人脸图像在获取的时候容易受到光照、遮挡等影响,这些因素给人脸性别识别带来了困难。采用卷积神经网络用于性别识别,并通过扩展网络结构,进一步增强卷积神经网络的分类能力。并且对识别效果进行置信度分析,通过设置卷积神经网络的拒识区域来解决拒绝区间的问题。在实际测试中,通过拒绝7.46%的测试样本,达到98.67%的正确识别率。 相似文献
8.
为了检测输电线路可见光图像中的塔材、玻璃绝缘子和复合绝缘子,本文采用了一种基于深度卷积神经网络的技术。通过有人直升机搭载高清相机拍摄19条不同的输电线路近600张图片,对图片中的背景、塔材、玻璃绝缘子和复合绝缘子目标进行人工标注及分块,采用数据扩展生成包含15万个样本的输电线路图像库。构造5层深度卷积神经网络,首先用Cifar-100数据集对网络进行预训练,然后用输电线路图像库进行网络调优。本文方法在检测真阳率为90%时,假阳率低于10%,明显优于传统方法,可用于输电线路可见光图像中的塔材、玻璃绝缘子和复合绝缘子检测,检测结果可用于诊断参考或进一步的目标状态分析。可对输电线路可见光图像中的塔材和绝缘子目标进行检测,并可扩展到其它类型目标的检测。 相似文献
9.
针对航拍图像中对地小目标识别率低、定位效果差的问题,提出了一种基于深度学习的目标检测算法。该算法利用VGG16网络作为微调网络,并添加部分深层网络,通过提取目标浅层特征与深层特征进行联合训练,克服检测过程中定位与识别相互矛盾的问题。提出把奇异值分解技术应用于卷积特征压缩处理,降低模型的计算与存储需求,并且采用多尺度训练方法以适应航空目标尺度的变化。实验结果表明,在通用数据集PASCAL上可以实现0.76mAP,检测速度达16fps,在专用航空目标数据集UCAS-AOD上可以实现0.63mAP,检测速度达18fps。基本满足对小目标检测精确度的要求,并且检测速度可以接近实时检测效果。 相似文献
10.
目前,空间目标中约6%为正在工作的航天器,而约94%的空间目标为太空垃圾,严重干扰和限制了航天器发射、运行等正常的太空活动轨道,在有效清除空间碎片之前,必须对其进行有效识别。本文基于散射光谱,使用卷积神经网络对空间碎片四种材质进行分类识别,并与BP神经网络的识别结果分析比较。鉴于试验所得的材质的原始光谱信噪比低、特征信息弱等特点,需要对光谱信号进行预处理包括去噪、BRDF计算和归一化处理。然后各取四种材质的200帧样本数据进行训练,另各取50帧数据预测,结果表明:卷积神经网络的总体精度比BP神经网络低2%,耗时少101 s;而增加训练样本数据量达到每个材质各500帧时,卷积神经网络的总体精度仅比BP神经网络低0.05%,耗时则少了891 s,卷积神经网络极大的体现了其时间的优越性。该方法对大数据量的空间碎片材质的分类,具有较大的实用性和借鉴意义。 相似文献