首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   1篇
  无线电   2篇
  2020年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 17 毫秒
1
1.
针对目前基于先验背景的显著度算法中,把图像的所有边界同等对待带来的误判别问题,本文提出一种基于可区分边界和加权对比度优化的显著度检测算法.为了客观评价显著度,本文首先设计了一种粗略评估显著度的指标,用来选择较好的背景图.以该指标为基础,该算法先利用Hausdorff距离对边界进行区分,再利用测地线距离变换完成可靠的背景检测;然后,构造了一种前景-背景加权的对比度来计算初始显著度;最后,使用加权的优化模型进行显著度的优化.在5个公开数据集上的实验结果表明,本文算法在保持快速、无训练等优点的同时,检测性能优于目前主流算法.  相似文献
2.
由于红外光学衍射限和红外探测器的局限,得到的红外图像噪声相对偏大,分辨率偏低。对红外图像进行超分辨率重建可以提高图像分辨率,但同时又会增强背景噪声。针对此问题,提出了基于稀疏编码的红外显著区域超分重建算法,将超分重建和显著度检测相结合,可以提高目标分辨率并降低背景噪声。首先采用双层卷积提取图像特征,并自适应选择图像信息熵较大的图像块用于训练联合字典。然后利用稀疏特征计算显著度获取显著区域,再将显著区域用训练好的字典进行超分辨重建,与目标无关的背景区域采用高斯滤波。实验结果显示改进的重建算法在同等条件下重建效果优于重建模型ScSR和SRCNN,图像信噪比提高3~4倍。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号