首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  国内免费   1篇
  无线电   59篇
  2018年   8篇
  2017年   26篇
  2016年   9篇
  2015年   8篇
  2014年   5篇
  2013年   3篇
排序方式: 共有59条查询结果,搜索用时 31 毫秒
1.
基于显著性局部定向模式和深度学习的鲁棒人脸识别   总被引:2,自引:2,他引:0  
针对传统人脸识别算法特征提取不充分和对噪声敏 感的问题,提出了一种基于显著性局部定向模式(SLDP)和深 度学习(DL)的人脸识别算法。首先基于信息的显著性提出一种改进的SLDP人脸描述方法,在 利用局部井型 领域梯度信息的基础上,使用两组梯度值中各自最大值和次大值的方向编码成二位八进制数 ,从而形成改进的 SLDP编码,通过统计选出最具有显著性的SLDP编码作为特征向量;然后将改进的SLDP编码作 为深度神经网 络(DBN)的输入,通过逐层贪婪训练网络,获得良好的网络参数,并用训练好的网络对测试 样本进行预测。仿真实验表明, 本文所提出的人脸识别算法相对于传统识别算法识别率高,并且在对抗噪声方面比其它算法 更具有鲁棒性。  相似文献
2.
一种新的多尺度深度学习图像语义理解方法研究   总被引:1,自引:1,他引:0  
如何在深度学习中融合 图像的多尺度信息,是基于深度学习的视觉算法需要解决的一个关键问题。本文提出一种基 于多尺度交替 迭代训练的深度学习方法,并应用于图像的语义理解。算法采用卷积神经网络(CNN)从原始 图像中提取稠密性特征 来编码以每个像素为中心的矩形区域,将多个尺度图像交替迭代训练,能够捕获不同尺度下 的纹理、颜色和 边缘等重要信息。在深度学习提取特征分类结果的基础上,提出了一种结合超像素分割的方 法,统计超像 素块的主导类别,来校正分类错误的像素类别,同时描绘出目标区域边界轮廓,完成最终的 语义理解。在Stanford Background Dataset 8类数据集上验证了本文方法的有效性,准确 率达到77.4%。  相似文献
3.
当前主流的图像检索方法采用的视觉特征,缺乏自主学习能力,导致其图像表达能力不强,此外,传统的特征索引方法检索效率较低,难以适用于大规模图像数据.针对这些问题,本文提出了一种基于卷积神经网络和监督核哈希的图像检索方法.首先,利用卷积神经网络的学习能力挖掘训练图像内容的内在隐含关系,提取图像深层特征,增强特征的视觉表达能力和区分性;然后,利用监督核哈希方法对高维图像深层特征进行监督学习,并将高维特征映射到低维汉明空间中,生成紧致的哈希码;最后,在低维汉明空间中完成对大规模图像数据的有效检索.在ImageNet-1000和Caltech-256数据集上的实验结果表明,本文方法能够有效地增强图像特征的表达能力,提高图像检索效率,优于当前主流方法.  相似文献
4.
胡正平  陈俊岭 《电子学报》2017,(10):2383-2389
子空间方法是主要利用全局信息的经典模式识别方法,随着深度学习思想的引入,局部自学习结构特征模型得到大家的关注.利用深度学习原理,本文提出一种多层融合的深度局部子空间稀疏优化特征自学习抽取模型解决目标识别问题.首先,对训练样本集通过最小化重构误差得到第一层的主成分(Principal Component Analysis,PCA)特征映射矩阵;然后,通过L1范数约束对特征映射结果进行稀疏优化,提高算法鲁棒性.接着,在第二层映射层以第一层的特征输出为输入,进行同样的特征矩阵学习操作,最终将图像映射至深层PCA子空间;然后,对各个映射层的特征提取结果进行加权融合,进行二值化哈希编码和直方图分块编码,提取图像的深度子空间稀疏特征.在FE-RET、AR、Yale等经典人脸数据库以及MNIST、CIFAR-10等目标数据库上的实验结果表明,该算法可以取得较高的识别率以及较好的光照、表情、人脸朝向鲁棒性,并且相对于卷积神经网络等深度学习框架具有结构简洁、收敛速度快等优点.  相似文献
5.
罗畅  王洁  王鹏飞  肖军  肖红 《电子学报》2017,(10):2390-2401
卷积自编码器(Convolutional Auto Encoder,CAE)提取的粗粒度池化特征具有一定范围内旋转和平移的不变性,因而得到广泛使用.然而,目前CAE仍主要依靠经验调节内部参数以获取满足要求的粗粒度池化特征.本文将CAE看作一个整体,从概率上分析了影响其表现的具体原因,构建了一个通用框架用于调节其中的主要参数以获取更好的粗粒度特征.首先从概率上权衡了粗粒度特征在池化层上的判别性与不变性,并在CAE中选择合适的卷积范围和白化参数.然后通过分析池化域内特征的稀疏度选择相应的池化方法以获取具有更好可分离性的粗粒度池化特征.在两个公开数据库(STL-10和CIFAR-10)的实验结果表明本文提出的方法可以指导CAE提取到更好的粗粒度池化特征并在多类分类任务中表现得更好.  相似文献
6.
主成分分析网络(Principal Component Analysis Network,PCANet)是基于深度学习理论的一种非监督式的特征提取方法,它克服了手工提取特征的缺点,目前其有效性仅仅在图像处理领域中得到了验证。本文针对当前谎言测试方法中脑电信号特征提取困难的缺点,首次将PCANet方法应用到一维信号的特征提取领域,并对测谎实验的原始脑电信号提取特征,然后使用支持向量机(Support Vector Machine,SVM)将说谎者和诚实者的两类信号进行分类识别,将实验结果和其它分类器及未使用特征提取的分类效果进行了比较。实验结果显示相对未抽取任何特征的方法,提出的方法PCANet-SVM可以获得更高的训练和测试准确率,表明了PCANet方法对于脑电信号特征提取的有效性,也为基于脑电信号的测谎提供了一种新的途径。  相似文献
7.
通过在面部表情数据集上训练深度卷积神经网络、深度稀疏校正神经网络两种模型,对两种深度神经网络在静态面部表情识别方面的应用作了对比和分析.基于面部表情的结构先验知识,提出一种面向面部表情识别的改良方法——K兴趣区域方法,该方法在构建的开放实验数据集上,降低了由于训练数据过少而导致深度神经网络模型泛化能力不佳的问题,使得混合模型普遍且显著地降低了测试错误率.进而,结合实验结果进行了深入分析,并对深度神经网络在任意图像数据集上的可能有效性进行了深入剖析和分析.  相似文献
8.
事件识别是信息抽取的重要基础.为了克服现有事件识别方法的缺陷,本文提出一种基于深度学习的事件识别模型.首先,我们通过分词系统获得候选词并将它们分为五种类型.然后选择六种识别特征并制定相应的特征表示规则用来将词转化为向量样例.最后我们通过深度信念网络抽取词的深层语义信息,并由Back-Propagation(BP)神经网络识别事件.实验显示模型最高F值达85.17%.同时,本文还提出了一种融合无监督和有监督两种学习方式的混合监督深度信念网络,该网络能够提高识别效果(F值达89.2%)并控制训练时间(增加27.50%).  相似文献
9.
稀疏编码(Sparsecoding)作为深度学习的一个分支,在机器学习领域取得了多个方面的突破。本文将探索如何将spamCoding结合到图像检索的多个模块中,利用SparseCoding的优点来提高检索的效果。  相似文献
10.
选取了自然场景中的交通标志为研究对象,采集了大量实景图像作为训练样本和测试样本,采用一种新型的深度学习模型MPCNN(Max-pooling Convolutional Neural Networks)进行识别实验,实验结果表明,深度学习方法在交通标志识别上不需要任何人工特征提取模型预先提取特征,直接对原始图进行训练学习就能取得较高的识别效率。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号