首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33315篇
  免费   3112篇
  国内免费   1869篇
电工技术   1275篇
综合类   1780篇
化学工业   2698篇
金属工艺   6306篇
机械仪表   1424篇
建筑科学   2070篇
矿业工程   732篇
能源动力   222篇
轻工业   1298篇
水利工程   429篇
石油天然气   1047篇
武器工业   268篇
无线电   6155篇
一般工业技术   3470篇
冶金工业   1522篇
原子能技术   198篇
自动化技术   7402篇
  2024年   265篇
  2023年   1534篇
  2022年   1484篇
  2021年   1632篇
  2020年   1379篇
  2019年   1556篇
  2018年   793篇
  2017年   1183篇
  2016年   1088篇
  2015年   1290篇
  2014年   2679篇
  2013年   2180篇
  2012年   2441篇
  2011年   2410篇
  2010年   2191篇
  2009年   2269篇
  2008年   2489篇
  2007年   2038篇
  2006年   1574篇
  2005年   1460篇
  2004年   1189篇
  2003年   840篇
  2002年   508篇
  2001年   386篇
  2000年   269篇
  1999年   193篇
  1998年   164篇
  1997年   145篇
  1996年   128篇
  1995年   108篇
  1994年   103篇
  1993年   68篇
  1992年   65篇
  1991年   64篇
  1990年   50篇
  1989年   37篇
  1988年   14篇
  1987年   10篇
  1986年   7篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
采用0.2 mm Al+5 mm Mg+0.2 mm Al的组坯方式,400℃保温10 min热轧制得大厚度比Al/Mg/Al层合板,研究了压下率对其界面结合、镁基材组织及拉伸性能的影响。对压下率为41%、49%和60%热轧制备的Al/Mg/Al层合板进行了界面SEM观察、微观组织观察、拉伸实验及拉伸断口的观察。结果表明,大厚度比Al/Mg/Al层合板在压下率为60%时,边部的附加拉应力造成边裂的出现;经41%压下率热轧可实现界面结合,但存在微缺陷,压下率为49%及以上可实现良好结合;压下率对Al/Mg/Al层合板的屈服强度和抗拉强度影响较小,对其伸长率影响较大。随着压下率增加,伸长率先增加后减小。压下率为49%时,伸长率最大为26%,其原因在于该工艺下镁基材的晶粒均匀细小,韧性提高。  相似文献   
2.
高熵形状记忆合金是在等原子比NiTi合金的基础上,结合高熵合金的概念,逐渐发展起来的一种新型高温形状记忆合金。近年来,已开发出了综合性能优异的(TiZrHf)50(NiCoCu)50系和(TiZrHf)50(NiCuPd)50系高熵形状记忆合金,引起了广泛的关注和研究兴趣。本文从物相组成、微观组织、马氏体相变行为、形状记忆效应和超弹性等角度出发,综述了高熵形状记忆合金的研究进展,并对高熵形状记忆合金未来的研究重点进行了展望。  相似文献   
3.
油田生产数据管理系统的开发设计,可以实时地获取油田生产的数据信息,并准确地掌握油田生产中的实际状况.从功能需求和技术需求两方面,对油田生产中数据管理系统设计的基本需求进行了分析,结合油田生产的实际情况,在基于MVC模型架构基础上,从系统架构设计以及系统模块功能设计两方面,对油田生产数据管理系统进行设计研究,实现了油田生产中数据的智能化控制和管理.  相似文献   
4.
《锻压技术》2021,46(10):99-105
选择厚度为0.2 mm的6063铝合金与厚度为5.0 mm的AZ80镁合金进行组坯,设定厚度比为20,分析各热轧压下率下、以热轧方式制得的大厚度比镁铝合金板的组织和力学性能。研究结果表明:当热轧压下率达到45%或更高时,镁铝合金板形成了结合性能优异的界面,镁基体内形成了均匀分布的细小晶粒;提高热轧压下率后,基体中的晶粒尺寸不断减小,此时形成了更小的晶粒尺寸离散系数,更多晶粒被压碎,晶粒分布状态也比较均匀;提高热轧压下率后,获得了更高屈服强度的大厚度比镁铝合金板,材料发生了更明显的加工硬化,而抗拉强度则先增大再下降,当热轧压下率达到55%时,获得了最大的抗拉强度;当热轧压下率达到65%时,韧窝数量明显增多,表明镁合金通过动态再结晶转变获得了更强的韧性。屈服应力呈现明显波动的状态,热轧压下率为35%时,获得了最高的屈服强度,65%热轧压下率下的屈服强度最低,逐渐提高热轧压下率后,屈服应力也不断减小。  相似文献   
5.
软件系统常用的架构设计有很多种,如B/S架构、C/S架构、分层架构、MVC架构、面向对象的架构、面向构件的架构、面向服务的架构等。实际应用中,一个系统往往会同时使用多种架构设计,称为复合架构。本文以某市政府采购系统项目为例,根据自己在项目中的实践论述分析了复合架构设计与应用。政府采购系统采用B/S架构开发,其中政府采购监督管理平台、政府采购项目管理平台、基础库建设采用了面向构件的架构设计,数据服务采用了面向服务的架构。  相似文献   
6.
中国南海海域部分天然气水合物储层中地层砂为高泥质含量细粉砂,开采防控砂难度较大。针对高泥质细粉砂挡砂机制问题,使用粒度中值为10.13 μm的泥质细粉砂样品,模拟单向气液携砂流动条件,使用绕丝筛板、金属烧结网、金属纤维、预充填陶粒4类挡砂介质在20~80 μm挡砂精度下进行挡砂模拟实验,采用显微成像系统观察挡砂介质内部及表面砂粒沉积与堵塞动态,分析介质流通性能和挡砂性能变化,总结堵塞规律、微观挡砂机制与形态及其控制因素。研究结果表明,不同类型和精度的挡砂介质对泥质细粉砂的堵塞总体呈现堵塞开始、堵塞加剧和堵塞平衡3个阶段。随着驱替进行,挡砂介质渗透率逐渐降低,幅度会高达90%以上;同时过砂速度减缓,最终过砂率为5%~10%。根据堵塞规律和微观图像分析,提出了粗组分分选桥架、局部砂团适度挡砂、整体砂桥阻挡等挡砂介质对泥质细粉砂的3种微观挡砂机制。以粗组分分选桥架挡砂机制为主的挡砂工况下,挡砂介质堵塞渗透率较高,但过砂率超过15%,挡砂效果较差;以整体砂桥挡砂机制为主时,过砂率在10%以下,挡砂性能较好,但各类挡砂介质的堵塞渗透率不足1 D,流通性能较差。局部砂团适度挡砂机制为主时介质挡砂性能及流通性能介于两者之间。挡砂介质对天然气水合物储层泥质细粉砂的微观挡砂机制和形态受挡砂介质类型、精度、地层砂特征以及流动条件等因素控制,其规律对于水合物泥质细粉砂防控砂优化有指导意义。  相似文献   
7.
安全仪表功能(SIF)回路是为了降低特定场景的安全风险而设置的,定级报告中SIF回路的功能描述是工艺设计的完整逻辑要求,包含关键动作及附件动作。安全完整性等级(SIL)验证属于概率学领域研究范畴,影响失效率的因素多且复杂。如果SIL验证无法通过,将造成大量的设计变更,浪费工程投资,影响工期。设计人员应关注SIL定级报告中关键动作的识别、要求平均失效概率以及SIF回路架构的约束。按照文中方法优化测量元件、逻辑控制器、执行元件及辅助元件的设计,可增加通过验证的概率。在没有预验证及安全要求规格书时,可以参考文中典型可通过SIL验证的SIF回路的经验架构进行优化设计,以减少工程变更。  相似文献   
8.
为了研究碳纤维混凝土硫酸盐冻侵蚀损伤,以川藏铁路喷射纤维混凝土工程环境为依托进行室内盐冻试验,盐冻最低、最高温度设置为(-37.12、17℃),(-32.12、12℃),(-25.12、5℃),(-20.12、0℃),硫酸盐质量分数分别为5%、7.5%、10%,纤维体积分数分别为0、0.10%、0.20%、0.24%、0.30%。通过宏观强度试验结果和微观分析可知,随着硫酸盐浓度的增加,碳纤维混凝土损伤越严重。与普通混凝土相比,碳纤维混凝土能够有效阻止开裂,其中0.3%的体积分数为最佳掺量。通过微观分析,揭示碳纤维在混凝土结构内起到类似梁的作用机制,并据此建立损伤模型。  相似文献   
9.
以鄂尔多斯煤为原料,加氢后的煤焦油为溶剂油,在高压釜内进行煤-油共炼反应,采用元素分析、工业分析、X射线衍射(XRD)、扫描电子显微镜等对原料煤和半焦微晶结构进行分析。结果表明:煤与半焦主要由C和O元素组成,此外还含有少量的H,S,N等元素;与原料煤相比,半焦的H/C摩尔比减少0.23,挥发分和固定碳质量分数分别降低15.77,1.64百分点,灰分升高17.87百分点;煤和半焦的XRD谱图中出现大量无机矿物质特征衍射峰,主要来源于煤和半焦中的灰分;高温、高氢压环境下,煤发生裂解与聚合反应,煤中芳香结构缩聚明显,有机质碳原子排列趋于定向且规则,石墨化程度增加;原料煤表面光滑,排列有序,粒径较大,而半焦表面粗糙,排列无序,粒径较小,表面有大量孔隙。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号