首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1099篇
  免费   59篇
  国内免费   59篇
电工技术   8篇
综合类   70篇
化学工业   433篇
金属工艺   66篇
机械仪表   15篇
建筑科学   31篇
矿业工程   15篇
能源动力   9篇
轻工业   64篇
水利工程   3篇
石油天然气   80篇
武器工业   4篇
无线电   49篇
一般工业技术   317篇
冶金工业   21篇
原子能技术   10篇
自动化技术   22篇
  2023年   27篇
  2022年   29篇
  2021年   37篇
  2020年   31篇
  2019年   32篇
  2018年   18篇
  2017年   27篇
  2016年   25篇
  2015年   26篇
  2014年   79篇
  2013年   46篇
  2012年   73篇
  2011年   57篇
  2010年   58篇
  2009年   67篇
  2008年   83篇
  2007年   84篇
  2006年   62篇
  2005年   59篇
  2004年   47篇
  2003年   32篇
  2002年   29篇
  2001年   36篇
  2000年   21篇
  1999年   14篇
  1998年   16篇
  1997年   18篇
  1996年   26篇
  1995年   7篇
  1994年   6篇
  1993年   9篇
  1992年   7篇
  1991年   6篇
  1990年   10篇
  1989年   7篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
排序方式: 共有1217条查询结果,搜索用时 15 毫秒
1.
汪翔  章学来  华维三  郑灵钰  刘璐  喻彩梅 《化工进展》2019,38(12):5457-5464
十二水磷酸氢二钠的过冷度、相分离以及热导率低等问题影响了其在低温蓄热场合的应用,因此需要对其进行相关的改性研究。本文通过成核剂和增稠剂的筛选实验及添加导热增强剂纳米氧化铁(α-Fe2O3),制备了质量分数为Na2HPO4·12H2O+2% Na4P2O7·10H2O+1%黄原胶(GX)+0.2%α-Fe2O3复合相变储能材料,并对其进行了凝固放热测试、热物性测试及循环稳定性测试。结果表明:2%的Na4P2O7·10H2O抑制过冷效果最好,成核效果不随循环次数的增加而减小,过冷度维持在2℃左右;GX可以有效抑制Na2HPO4·12H2O的相分离现象,且质量分数为0.75%~1.25%是较合适的剂量;α-Fe2O3可以有效地提高Na2HPO4·12H2O的热导率,添加0.2%α-Fe2O3使热导率提高了90.8%;循环150次后,复合相变储能材料的相变潜热值为252J/g,相比于循环前衰减了7.4%,相变温度为35.4℃,过冷度为1.3℃,热导率为2.054W/(m·K),相比纯材料提高了100.2%。改性后的复合相变储能材料相变温度适宜,潜热值大,热导率高,热性能稳定,可推广应用到热泵蓄热、温室生产和电子器件散热等领域。  相似文献   
2.
介绍了一种新型高效低耗的"表层过滤"技术及其在多种化工生产上大规模用于精密预处理的情况。  相似文献   
3.
分别以5种异氰酸酯为硬段,聚己二酸1,4-丁二醇酯二醇(PBA)为软段,制备了不同异氰酸酯型的热塑性聚氨酯弹性体(TPU)。通过傅里叶变换红外光谱(FTIR),差示扫描量热(DSC)和电子拉伸等测试对其结构和性能进行表征,探究了异氰酸酯类型对热塑性聚氨酯弹性体的软硬段相互作用、PBA结晶性和机械性能的影响。结果表明,HDI-TPU氨基氢键化程度最高,HMDI-TPU的硬段间氢键化程度、软段结晶度最高,IPDI-TPU的氢键化程度、软段结晶度最低。在制备的5种异氰酸酯型TPU中,HDI-TPU的拉伸强度为29.47 MPa,断裂伸长率874%,邵D硬度44,综合机械性能最佳。  相似文献   
4.
采用十三氟辛醇(TEOH-6)、异佛尔酮二异氰酸酯(IPDI)、二乙醇胺(DEOA)自制单端羟基含氟二元醇(DE-TEOH);采用二羟甲基丙酸(DMPA)和季戊四醇(PER)自制八羟基多元醇(DI-PE-8)。使用傅里叶变换红外光谱仪(FT-IR)和核磁共振氢谱仪(1 H-NMR)对产物的结构进行分析,并将产物用于改性水性聚氨酯,采用无皂相反转乳化工艺制备了侧链含氟紫外光固化水性星形聚氨酯(UV-WFPU),并对胶膜的表面相结构和性能进行了表征,考察了DE-TEOH用量对胶膜相结构及性能的影响。结果表明:与传统聚醚型聚氨酯相比,UV-WFPU存在明显微相分离结构,且随着DE-TEOH添加量的增加,UV-WFPU胶膜的吸水率大幅下降、接触角增加、热稳定性提高。  相似文献   
5.
利用相图计算的CALPHAD方法和超音雾化制粉技术,在CuFeCoCr体系中设计并制备了一系列微米级复合粉体。通过热压烧结方法在烧结温度为950℃,烧结压力为45 MPa的工艺条件下成功获得块体复合材料。研究了块体复合材料中Cu含量对显微组织,热导率,热膨胀系数以及显微硬度的影响。结果表明:CuFeCoCr块体复合材料均由fcc富铜相和fcc富铁钴铬相组成。该系列复合材料经600℃时效处理8 h后,其热膨胀系数变化范围为5.83×10-6~10.61×10-6 K-1,热导率变化范围为42.17~107.53 W·m-1·K-1。其中Cu55(Fe0.37Cr0.09Co0.54)45复合材料表现出良好的综合性能,即其热膨胀系数和热导率分别为9.08×10-6K-1和91.09 W·m-1·K-1,与电子封装半导体材料的热膨胀系数相匹配。  相似文献   
6.
对Ag-Ni偏晶合金开展了快速/亚快速凝固实验,获得了富Ni相粒子均匀弥散分布于Ag基体的合金样品,Ag-Ni合金显微硬度随着合金Ni含量增加和试样凝固过程冷却速率升高而增大,当Ag-4.0%Ni合金液-液相变开始阶段熔体冷却速率达1800 K/s时,其显微硬度接近粉末冶金生产的Ag-10.0%Ni片状电触头的硬度。建立了描述Ag-Ni合金凝固组织演变的动力学模型,模拟计算了Ag-Ni合金凝固组织形成过程,分析讨论了合金成分和试样直径(冷却速率)对Ag-Ni合金凝固组织形成过程的影响。结果表明:富Ni相液滴/粒子形核阶段熔体的冷却速率对合金凝固组织弥散度具有决定性影响;合金的Ni含量越高、试样冷却速率越低,凝固组织中富Ni相粒子平均尺寸越大;Ag-Ni合金熔体冷却凝固时,富Ni相液滴/粒子的尺寸主要受形核和长大控制,Ostwald粗化作用很弱。  相似文献   
7.
文章建立了用相分离测定反应堆冷却水中溶解氢的方法,该方法以氮气作为载气,通过水样减压、氮气鼓泡,将反应堆冷却水中溶解氢转化到气相中,再用气相色谱测定,间接得出反应堆冷却水中溶解氢的浓度,适用于反应堆水样的分析。  相似文献   
8.
张茜  王艳华 《化工学报》2019,70(9):3396-3403
将温控相分离Ir纳米催化剂用于α,β-不饱和醛、酮的选择性加氢反应中,系统考察了其催化加氢性能。在优化的反应条件下,Ir纳米催化剂对α,β-不饱和醛的C═O键加氢选择性大于99%,对α,β-不饱和酮的C═C键加氢选择性大于99%。 Ir纳米催化剂经简单分离可直接循环使用5次,选择性均大于99%。TEM表征结果显示反应四次后的Ir纳米催化剂的平均粒径变为(1.9 ± 0.2) nm,比新制备的Ir纳米催化剂的平均粒径(1.3 ± 0.1)nm有所增大。ICP-AES测试结果表明Ir流失低于仪器检测下限(检测下限为5 μg/L)。  相似文献   
9.
李洪伟  魏国宝  王亚成  付东威 《化工学报》2019,70(11):4216-4230
小通道填充泡沫金属成为近几年强化换热方向的研究热点。以空气和水为工作介质,将PPI为10和20的泡沫金属分别填充到截面为2.5 mm×2.5 mm的T型小通道内,改变泡沫金属的亲疏水性,分别研究弹状流和环状流下气液两相表观流速及亲疏水性对相分离的影响机制。比较亲水、疏水处理及未处理这三种泡沫金属的分离特性发现:无论是弹状流还是环状流,分离效果最好的是亲水处理后的泡沫金属,其次是未经处理的泡沫金属,而进行疏水处理后的分离效果最差,填充泡沫金属的T型通道相分离效果要明显好于未填充的通道。对于亲疏水处理过的T型通道,无论是弹状流还是环状流,T型小通道内侧支管气相采出分率占优,液相采出分率随着液体表观速度的增加而降低,但气相表观速度对液相采出分率影响很小。而泡沫金属PPI的减小会降低气相采出分率,使分配效果更加趋近于均匀分布线。  相似文献   
10.
探讨了磺酸型水性聚氨酯乳液存储长时间后,胶膜性能下降的原因。以聚四亚甲基醚二醇(PTMG 2000)、六亚甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)、1,4-丁二醇(BDO)、乙二胺基乙磺酸钠(AAS-Na)为主要原料合成了一系列不同亲水基团含量的磺酸型水性聚氨酯乳液,并将其于常温下放置5个月。对乳液放置5个月前后的性能进行表征,发现在放置5个月后,乳液的贮藏稳定性依旧较好,但是微相分离程度增加,使得乳液成膜后力学性能略微下降,耐水性显著降低。为今后磺酸型水性聚氨酯乳液存放过程中性能稳定性的研究提供一些理论和实验支持。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号