首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8198篇
  免费   1154篇
  国内免费   433篇
电工技术   1513篇
综合类   589篇
化学工业   1159篇
金属工艺   169篇
机械仪表   592篇
建筑科学   188篇
矿业工程   105篇
能源动力   184篇
轻工业   683篇
水利工程   67篇
石油天然气   362篇
武器工业   46篇
无线电   1325篇
一般工业技术   1588篇
冶金工业   127篇
原子能技术   283篇
自动化技术   805篇
  2024年   18篇
  2023年   173篇
  2022年   238篇
  2021年   294篇
  2020年   328篇
  2019年   274篇
  2018年   280篇
  2017年   352篇
  2016年   403篇
  2015年   372篇
  2014年   543篇
  2013年   620篇
  2012年   587篇
  2011年   662篇
  2010年   420篇
  2009年   460篇
  2008年   450篇
  2007年   477篇
  2006年   425篇
  2005年   332篇
  2004年   325篇
  2003年   288篇
  2002年   187篇
  2001年   156篇
  2000年   171篇
  1999年   126篇
  1998年   104篇
  1997年   117篇
  1996年   107篇
  1995年   76篇
  1994年   65篇
  1993年   53篇
  1992年   43篇
  1991年   59篇
  1990年   34篇
  1989年   22篇
  1988年   17篇
  1987年   16篇
  1986年   13篇
  1985年   22篇
  1984年   20篇
  1983年   14篇
  1982年   27篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1959年   2篇
排序方式: 共有9785条查询结果,搜索用时 18 毫秒
1.
《Ceramics International》2021,47(20):28557-28565
To reduce the energy consumption of cooling in the hot summer days, searching for novel NIR shielding materials for buildings is of great value. In this report, monodispersed F doped TiO2 nanocrystals with an average size of 8.6 nm were synthesized as novel solar shielding materials for energy-saving windows. All the products adopted an anatase TiO2 structure. After doping of F ions, the morphology of TiO2 was transformed from an irregular shape to a pseudospherical shape. The Raman shift and XPS depth analysis confirmed the successful doping of F ions into the lattice oxygen sites in the TiO2 structure. The introduction of F ions generated free electrons and bulk Ti3+ in TiO2 crystals, which activated a localized surface plasmon resonance (LSPR) absorption in the NIR region. Correspondingly, the NIR shielding performance of the TiO2 films improved with increasing F doping amounts. The NIR shielding value of the films increased from 1.3% to 43.2% when the molar ratio of F to Ti increased from 0 to 0.3. The reason can be attributed to the enhanced NIR absorption induced by the increased electron concentration after doping of fluorine ions. The F–TiO2 films showed superior visible transmittance (90.1–96.7%). Moreover, the F–TiO2 films lowered the indoor temperature of the heat box by 5.3 °C in the thermal tests. Overall, the prepared F–TiO2 nanocrystals show a great potential to be used for energy-saving windows.  相似文献   
2.
Hydrogen is among a few promising energy carriers of the future mainly due to its zero-emission combustion nature. It also plays an important role in the transition from fossil fuel to renewable. Hydrogen technology is relatively immature and serious knowledge gaps do exist in its production, transport, storage, and utilization. Although the economical generation of hydrogen to the scale required for such transition is still the biggest technical and environmental challenge, unlocking the large-scale but safe storage is similarly important. It is difficult to store hydrogen in solid and liquid states and storing it in the gaseous phase requires a huge volume which is just available in subsurface porous media. Sandstone is the most abundant and favourable medium for such storage as carbonate rock might not be suitable due to potential geochemical reactions.It is well established in the literature that interaction of the host rock-fluid and injected gas plays a crucial role in fluid flow, residual trapping, withdrawal, and more generally storing capacity. Such data for the hydrogen system is extremely rare and are generally limited to contact angle measurements, while being not representative of the reality of rock-brine-hydrogen interaction(s). Therefore, we have conducted, for the first time, a series of core flooding experiments using Nuclear Magnetic Resonance (NMR) to monitor hydrogen (H2) and Nitrogen (N2) gas saturations during the drainage and imbibition stages under pressure and temperature that represent shallow reservoirs. To avoid any geochemical reaction during the test, we selected a clean sandstone core plug of 99.8% quartz (Fontainebleau with a gas porosity of 9.7% and a permeability of 190 mD).Results show significantly low initial and residual H2 saturations in comparison with N2, regardless of whether the injection flow rate or capillary number were the same or not. For instance, when the same injection flow rate was used, H2 saturation during primary drainage was 4% and it was <2% after imbibition. On other hand, N2 saturation during the primary drainage was 26% and it was 17% after imbibition. However, when the same capillary number of H2 was utilised for the N2 experiment, the N2 saturation values were ~15% for initial gas saturation and 8% for residual gas saturation. Our results promisingly support the idea of hydrogen underground storage; however, we should emphasise that more sandstone rocks of different clay mineralogy should be investigated before reaching a conclusive outcome.  相似文献   
3.
This study investigated the effect of 5 freeze–thaw cycles (freezing at −18°C for 12 h and then thawing at 4°C for approximately 12 h) on the meat quality, proximate composition, water distribution and microstructure of bovine rumen smooth muscle (BSM). As the number of freeze–thaw cycles increased, BSM pH, shear force, water content and protein content decreased by 3.06%, 35.50%, 14.49% and 21.11%, respectively, whereas BSM thawing loss, cooking loss, pressing loss, total aerobic count (TAC), ash content and fat content increased by 108.12%, 47.75%, 78.33%, 90.99%, 105% and 35.20%, respectively. The freeze–thaw cycles resulted in greater protein and lipid oxidation, as evidenced by a 36.46% reduction in the sulfhydryl content and a 209.06% and 338.46% increase in the carbonyl and malondialdehyde contents, respectively. Ice crystal formation disrupted the structural integrity of the muscle tissue. Low-field nuclear magnetic resonance results showed that the freeze–thaw cycles prolonged the relaxation times (T2b, T21 and T22), indicating that immobile water shifted to free water, and consequently, free water mobility increased. After 3 freeze–thaw cycles, the decline in shear force slowed, the increase in thawing loss became accelerated, and the TAC approached the domain value (6 log colony-forming units/g). Therefore, the number of freeze–thaw cycles of smooth muscle during transport, storage and distribution should be controlled to 3 or fewer. The current results provide a theoretical basis and data support for the further utilisation and culinary processing of smooth muscle.  相似文献   
4.
The classical prompt loss of fast ions produced by minority ion cyclotron resonance heating(ICRH)is studied by a guiding center orbit following code in the Experimental Advanced Superconducting Tokamak(EAST).It is found that the loss of fast ions produced by ICRH mainly appears in both ends of the resonance layer,while the loss of fast ions in the middle resonance layer is very small.The dominant fast loss comes from trapped ions,rather than from passing ions.Controlling the location of resonance layer at the plasma core may be more beneficial to the EAST tokamak ICRH.In addition,the loss distribution of fast ions is studied.The results show that the fast ions are mainly lost near the midplane in the poloidal direction,but almost uniformly in the toroidal direction.Moreover,we investigate the dependence of fast ion loss on the ICRH power.The simulation results show that the loss fraction of fast ions in both ends of the resonance region increases with the ion cyclotron range of frequencies(ICRF)power,but barely affects the loss of fast ions in the middle region.  相似文献   
5.
《Ceramics International》2022,48(22):32827-32836
To investigate the crystal structure, electrical properties, and magnetic properties of Ca–Sn co-doped Y3-xCaxFe5-xSnxO12 (x = 0.00–0.25 in steps of 0.05), solid-state reaction experiments, first principles calculations, and complex crystal bonding theoretical calculations were performed. The relative permittivity (εr) is strongly correlated with the average bond ionicity when Ca2+ is added. Furthermore, appropriate Sn4+ substitution significantly lowers the dielectric loss (tanδε) associated with the lattice energy. The right amount of Ca–Sn co-doping can change the saturation magnetization (4πMS) and improve the microscopic morphology of YIG, lowering the ferromagnetic resonance linewidth (ΔH) of YIG. The optimized microwave dielectric and magnetic properties are as follows: εr = 14.7, tanδε = 4.15 × 10?4, 4πMS = 1680 G, and ΔH = 53 Oe for Y2.8Ca0.2Fe4.8Sn0.2O12 sintered for 6 h at 1425 °C. Based on this material, a simple 3D model of a strip-line circulator with an insertion loss of less than 0.3 dB at each port and isolation greater than 20 dB in the 10–12 GHz range was developed, indicating the potential of the material for microwave high-frequency components such as circulators.  相似文献   
6.
In this work, gallium doped copper sulfide (Ga-doped CuS) nanocrystals were prepared using a solvothermal method. The effects of Ga doping on the crystal structures, chemical composition, morphology, optical properties and thermal performance of copper sulfide (CuS) were investigated. The Ga-doped CuS nanocrystals had a hexagonal structure comparable to that of pure CuS. The Cu+/Cu2+ ratio first decreased and then increased with increasing Ga3+ doping. Both CuS and Ga-doped CuS exhibited nanoplate and nanorod morphologies. The visible transmittance of the Ga-doped CuS films was in the range of 61–77.1%. Importantly, the near-infrared (NIR) shielding performance of the films can be tuned by adjusting the concentration of the Ga dopant. The NIR shielding value of the optimal Ga-doped CuS film was 72.4%, which was approximately 1.5 times as high as that of the pure CuS film. This can be ascribed to the enhanced plasmonic NIR absorption that resulted from an increase in the hole concentration after doping with Ga3+ ions. In the thermal performance test, the Ga-doped CuS film lowered the interior temperature of the heat box by 9.1 °C. Therefore, the integration of good visible transmittance and high NIR shielding performance make the Ga-doped CuS nanocrystals a promising candidate for energy-efficient window coatings.  相似文献   
7.
吖啶橙分子聚集体微粒可在513nm波长处出现最大的共振光散射强度(RLS)。在稀硫酸介质中,甲醛能催化溴酸钾氧化吖啶橙的反应,促使其RLS强度减弱。在最佳实验条件下,甲醛质量浓度ρ在0.020~0.25μg/mL的范围内与△I值呈良好的线性关系,线性回归方程为△I=1113.99ρ+49.23,线性相关系数r为0.9986。本法与国标法进行对照,在置信度等于95%时,用Cochran检验,两种方法间不存在显著性差异,方法操作简单、灵敏度高,用于室内外空气中甲醛测定,结果满意。  相似文献   
8.
基于插值法建立乳制品中酪蛋白的核磁共振磷谱定量检测方法。结果表明,该方法的检出限为0.38 g/L(信噪比(RSN)=3),定量限为1.25 g/L(RSN=10);在5.00~35.00 g/L质量浓度范围内线性良好,相关系数R2大于0.999;加标回收率在91.94%~105.10%范围区间;日内精密度在0.65%~1.40%范围区间;日间精密度在1.40%~1.80%范围区间。对市售不同乳制品中酪蛋白含量进行检测,该方法与GB 31638—2016《酪蛋白》测定结果误差在±5%以内,满足方法可行性对比分析验证要求。该方法相比常规方法样品前处理简单、定量准确性高,大大缩短了检测时间,且有更广泛的适用性,满足乳制品中酪蛋白快速定量检测的要求。  相似文献   
9.
Colloidal nanoplatelets (NPLs) and nanosheets with controlled thickness have recently emerged as an exciting new class of quantum-sized nanomaterials with substantially distinct optical properties compared to 0D quantum dots. Zn-based NPLs are an attractive heavy-metal-free alternative to the so far most widespread cadmium chalcogenide colloidal 2D semiconductor nanostructures, but their synthesis remains challenging to achieve. The authors describe herein, to the best of their knowledge, the first synthesis of highly stable ZnO NPLs with the atomically precise thickness, which for the smallest NPLs is 3.2 nm (corresponding to 12 ZnO layers). Furthermore, by means of dynamic nuclear polarization-enhanced solid-state 15N NMR, the original role of the benzamidine ligands in stabilizing the surface of these nanomaterials is revealed, which can bind to both the polar and non-polar ZnO facets, acting either as X- or L-type ligands, respectively. This bimodal stabilization allows obtaining hexagonal NPLs for which the surface energy of the facets is modulated by the presence of the ligands. Thus, in-depth study of the interactions at the organic–inorganic interfaces provides a deeper understanding of the ligand–surface interface and should facilitate the future chemistry of stable-by-design nano-objects.  相似文献   
10.
光降解乙醛(CH3CHO)是一种新型高效的乙醛去除方法,通常采用TiO2作为光催化剂。然而TiO2对乙醛吸附能力较弱,对产物的选择性较低,电子-空穴对重组率较高,严重限制了对乙醛的降解性能。本研究通过在TiO2上负载CuAg纳米粒子(CuAg/TiO2),成功构建了高效稳定的光催化降解乙醛催化剂,有效解决了TiO2的固有缺陷。在自然光照射下,CuAg/TiO2对乙醛的降解率高达42.49%。连续4轮全光谱光催化降解乙醛,CuAg/TiO2活性均保持在98.89%以上。进一步的机理研究表明,CuAg/TiO2中的CuAg纳米粒子在光照下产生热电子,随后热电子转移到TiO2和吸附在Ag位点上的氧中。CuAg/TiO2上生成的超氧自由基能有效地降解乙醛,从而在乙醛降解过程中表现出优异的性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号