首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6435篇
  免费   726篇
  国内免费   554篇
电工技术   146篇
综合类   277篇
化学工业   666篇
金属工艺   1245篇
机械仪表   273篇
建筑科学   23篇
矿业工程   62篇
能源动力   170篇
轻工业   30篇
水利工程   4篇
石油天然气   32篇
武器工业   45篇
无线电   2416篇
一般工业技术   1299篇
冶金工业   419篇
原子能技术   130篇
自动化技术   478篇
  2024年   4篇
  2023年   76篇
  2022年   120篇
  2021年   159篇
  2020年   192篇
  2019年   214篇
  2018年   194篇
  2017年   227篇
  2016年   213篇
  2015年   217篇
  2014年   288篇
  2013年   367篇
  2012年   387篇
  2011年   478篇
  2010年   295篇
  2009年   375篇
  2008年   366篇
  2007年   431篇
  2006年   419篇
  2005年   325篇
  2004年   280篇
  2003年   275篇
  2002年   247篇
  2001年   252篇
  2000年   230篇
  1999年   188篇
  1998年   152篇
  1997年   143篇
  1996年   89篇
  1995年   95篇
  1994年   84篇
  1993年   63篇
  1992年   72篇
  1991年   47篇
  1990年   52篇
  1989年   33篇
  1988年   35篇
  1987年   11篇
  1986年   6篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1979年   1篇
  1978年   1篇
排序方式: 共有7715条查询结果,搜索用时 31 毫秒
1.
Given the superior thermal stability and electromagnetic features, continuous Si–B–(C)–N ceramic fibers have displayed great potential to fulfill the increasing demand for the high-temperature structural and functional materials. Manufacture of such ceramic fibers depends heavily upon the design of processable polymer precursors. Herein, a class of polyborosilazanes (PBSZs) with high spinnability were created through a facile one-pot synthesis. The trade-off between spinnability and ceramic yield of PBSZs was overcome by using heptamethyldisilazane and hexamethyldisilazane as the co-condensing agents to polymerize silicon and boron chloride monomers. The optimal PBSZs can fabricate continuous Si–B–C–N fibers with homogeneous diameter of 7.9 ± 0.5 μm and high ceramic yield of 80 wt%. Experimental characterization and quantum chemical computation revealed the mechanistic pictures of the impact of pendant groups on the polycondensation, melt spinning, and pyrolyzing process. These insights improve our understanding of spinnable pre-ceramic polymers for exploiting high-performance nitride ceramic fibers.  相似文献   
2.
Flexible scintillating fiber plays an important role in X-ray radiation monitoring and high-resolution medical imaging, while construction of scintillating fiber derived from the commercial material system meet with limited success. Here, we report the design and successful fabrication of the Ce-activated lutetium aluminum silicate glass, nanostructured glass, and fiber, and explore their scintillating properties. The scintillating glass with optimized composition and optical properties is determined. The crystallization behavior of lutetium aluminum silicate glass is studied and the nanostructured glass embedded with orthorhombic Lu2Si2O7 phase is successfully constructed for the first time. Importantly, the crystalline layer thickness of the nanostructured glass can be finely tuned and ~172.89% enhancement in the scintillating performance can be achieved. Furthermore, the fiber with large sized core is fabricated and its radiation response properties are tested. The results show that it exhibits high sensitivity and its scintillating emission is lineally dependent on the X-ray power, indicating the potential application for radiation detection.  相似文献   
3.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
4.
The aim of this study was to determine the influence of severe plastic deformation processing and the changes in microstructure resulting therefrom on the corrosion resistance of an Al–Mg–Si alloy. The alloy was processed using incremental equal channel angular pressing, which caused a reduction in grain size from 15 to 0.9 µm. The grain refinement was accompanied by an increase in the number of grain boundaries and dislocations, and by changes in grain orientation. However, there was no change in the size and number of intermetallic particles, which presumably resulted in a constant number of galvanic couplings. Electrochemical experiments revealed only slight differences between the samples before and after processing. Higher potential transients/oscillations upon immersion and increased corrosion currents in the vicinity of corrosion potential point to slightly higher reactivity of the most refined material. This indicates that intermetallic particles are the most crucial microstructural elements in terms of corrosion resistance. Their impact exceeds that of grain boundaries, in particular, at the stage of corrosion initiation. The development of corrosion attack is controlled more by the microstructure of the matrix as the grain refinement resulted in a less pronounced corrosion attack in comparison with the coarse-grained sample.  相似文献   
5.
《Ceramics International》2022,48(18):25933-25939
In order to gain more insights into the influence of rare earth elements on the melt structure of SiO2–CaO–Al2O3–MgO glass ceramics, Raman and X-ray photoelectron spectroscopy techniques were used to study the influence of La2O3 on the Si–O/Al–O tetrahedron structure within SiO2–CaO–Al2O3–MgO–quenched glass samples in this study. Results showed that some Raman peak shapes at low frequencies (200–840 cm?1) changed significantly after the addition of La2O3, compared to the high frequency (840–1200 cm?1) region that corresponds to the [SiO4] structure, suggesting that the depolymerization of the low-frequency T–O–T (T=Si or Al) structure was more prevalent with La3+ addition. Besides, the depolymerization extent of the Si–O/Al–O tetrahedral network varied when the melt composition altered. Most notably, depolymerization is the most significant at a low CaO/SiO2 ratio (0.25) and a high Al2O3 content (8%). Meanwhile, La3+ can promote the transformation of Si–O–Si and Al–O–Al bonds to the Si–O–Al ones, thereby forming a complex ionic cluster network interwoven with Si–O and Al–O tetrahedrons.  相似文献   
6.
使用扫描电镜、能谱、温度场实时采集等测试方法,研究了焊丝中Si含量对AA6063铝合金GMAW焊接头热裂纹敏感性的影响规律及机理. 结果表明,当焊丝为纯铝时,鱼骨试样的焊缝中心会出现细长的焊接裂纹;当焊丝中的Si含量为4.5% ~ 6%时,裂纹的长度变短,但是开裂距离明显增加;当焊丝中的Si含量达到11% ~ 13%时,试样焊缝无裂纹出现. 随着Si含量的不断提高,合金易出现裂纹的凝固温度区间先增大后减小;焊丝中Si含量的不同还会影响凝固后期金属液的流动性,使得焊缝晶界处的物相成分和形态都有明显的区别;同时,Si含量的提高会使得接头的冷却速度先增加后减小,从而导致应力状态改变,热裂纹敏感性先升高后降低.  相似文献   
7.
An active band‐notched frequency selective absorber (BNFSA) with switchable notch band is proposed in this article. The BNFSA is a two‐layer structure composed of a lossy layer at the top and a ground plane at the bottom, separated by an air spacer. The element of the lossy layer is a lumped‐resistor‐loaded metallic dipole with a parallel LC resonance structure, which is realized by complementary n‐shaped resonator (CnR) inserted in the center, and PIN diode is welded at two arms of CnR. The bias circuit printed on the back of the substrate of the lossy layer connects to anode and cathode of the diode by via hole and isolates by the inductor. Simulation results show that the notch bands are located at 4.50 and 6.81 GHz when the diode sets to ON and OFF, respectively. To validate the performance of switchable BNFSA, the prototypes are fabricated and measured, reasonable agreement between simulated and measured results is obtained.  相似文献   
8.
The microstructures and mechanical properties of the interconnected SiC–Si network reinforced Al–20Si composites solidified under high pressures were investigated. The results demonstrate that the complete interconnected SiC–Si network can be obtained by high pressure solidification, and the connected micron-sized pores are uniformly distributed in the interconnected SiC–Si network. The compressive strength and microhardness of the SiC/Al–20Si composites solidified under 3 GPa were 723 MPa and 229 HV0.05, respectively. Furthermore, the fracture process of SiC/Al–20Si composites was studied by in situ TEM tensile testing. The result shows that the crack first initiated and propagated at the Al/Si interface under an external load, and the SiC particles in the interconnected SiC–Si network can effectively hinder the crack propagation, thus enhancing the strength.  相似文献   
9.
《Ceramics International》2022,48(15):21451-21458
During the deposition of a-C:H film, defects (pinholes or discontinuities) caused by excessive stress will inevitably appear, which will reduce the corrosion resistance of the a-C:H film. In this study, top a-C:H:Si:O layers (thickness of approximately 0.3 μm) on the surface of a-C:H films were deposited on a large scale by PACVD technology using acetylene (C2H2) and/or hexamethyldisiloxane (HMDSO) as reactants, to improve the corrosion resistance of a-C:H films while ensuring the appropriate overall hardness of the films. The corrosion behaviors of the films were studied by electrochemical impedance spectroscopy (EIS) and Tafel polarization. We found that the a-C:H/a-C:H:Si:O films possess a lower electrolyte penetration rate due to their stronger capacitance characteristics. In addition, the corrosion current density of the a-C:H/a-C:H:Si:O films (10?10 A cm?2) were reduced by 2 orders of magnitude compared to the a-C:H film (10?8 A cm?2), and by 3 orders of magnitude compared to 316 stainless steel (10?7 A cm?2). The impedance results obtained by EIS were simulated using appropriate equivalent circuits, and the corresponding electrical parameters were used to further verify the electrochemical protection behavior of the top a-C:H:Si:O layer.  相似文献   
10.
In this study, alumina-based composite with 12 wt% Al and 16 wt% Si3N4 was designed to achieve the synthesis of 15R-Sialon reinforced alumina composite. To investigate the reaction mechanism, two-step sintered Al-Si3N4-Al2O3 samples at different temperatures ranging from 600°C to 1500°C were prepared and characterized via X-ray diffraction and scanning electron microscope (SEM). The results revealed that 15R-Sialon was synthesized at 1500°C through a novel liquid Si phase sintering and Si3N4 played as a precursor and a reactant. First, Si3N4 precursor reacted with Al to form intermediate phases AlN and Si, which were not further transformed below 1400°C. When the sintering temperature was 1500°C, the formed Si presented as a liquid phase, under the influence of which plate-like15R-Sialon was generated from Al2O3, residual Si3N4, and derived AlN. The obtained Si was also involved in the synthesis of 15R-Sialon and completely transformed. In addition to the AlN from Si3N4, the AlN deriving from the nitridation of Al may not react with liquid Si. Compared to 15R-Sialon from liquid Si, plate-like 15R-Sialon with smaller size was generated from AlN, SiO, and O2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号