首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24072篇
  免费   2204篇
  国内免费   1716篇
电工技术   1779篇
技术理论   1篇
综合类   3221篇
化学工业   2304篇
金属工艺   1424篇
机械仪表   1577篇
建筑科学   2149篇
矿业工程   848篇
能源动力   1324篇
轻工业   1365篇
水利工程   1197篇
石油天然气   1722篇
武器工业   284篇
无线电   1373篇
一般工业技术   3406篇
冶金工业   920篇
原子能技术   338篇
自动化技术   2760篇
  2024年   34篇
  2023年   331篇
  2022年   496篇
  2021年   666篇
  2020年   727篇
  2019年   624篇
  2018年   565篇
  2017年   658篇
  2016年   722篇
  2015年   718篇
  2014年   1106篇
  2013年   1361篇
  2012年   1682篇
  2011年   1739篇
  2010年   1231篇
  2009年   1359篇
  2008年   1332篇
  2007年   1663篇
  2006年   1563篇
  2005年   1380篇
  2004年   1145篇
  2003年   1102篇
  2002年   873篇
  2001年   737篇
  2000年   694篇
  1999年   577篇
  1998年   470篇
  1997年   434篇
  1996年   366篇
  1995年   337篇
  1994年   253篇
  1993年   207篇
  1992年   191篇
  1991年   165篇
  1990年   132篇
  1989年   121篇
  1988年   86篇
  1987年   38篇
  1986年   21篇
  1985年   10篇
  1984年   17篇
  1983年   11篇
  1982年   11篇
  1981年   11篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   4篇
  1959年   3篇
  1956年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
2.
With the blossom of information industry, electromagnetic wave technology shows increasingly potential in many fields. Nevertheless, the trouble caused by electromagnetic waves has also drawn extensive attention. For instance, electromagnetic pollution can threaten information safety in vital fields and the normal function of delicate electronic devices. Consequently, electromagnetic pollution and interference become an urgent issue that needs to be addressed. Carbon nanotubes (CNTs) have become a potential candidate to deal with these problems due to many advantages, such as high dielectric loss, remarkable thermodynamic stability, and low density. With the appearance of climbing demands, however, the carbon nanotubes combining various composites have shown greater prospects than the single CNTs in microwave absorbing materials. In this short review, recent advances in CNTs-based microwave absorbing materials were comprehensively discussed. Typically, we introduced the electromagnetic wave absorption mechanism of CNTs-based microwave absorbing materials and generalized the development of CNTs-based microwave absorbers, including CNTs-based magnetic metal composites, CNTs-based ferrite composites, and CNTs-based polymer composites. Ultimately, the growing trend and bottleneck of CNTs-based composites for microwave absorption were analyzed to provide some available ideas to more scientific workers.  相似文献   
3.
Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were prepared by the conventional solid-state reaction method. The phase composition, sintering characteristics, microstructure and dielectric properties of Ti4+ replacement by Nb5+ in the formed solid solution Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were systematically studied. The structural variations and influence of Nb5+ doping in Mg(Ti1-xNbx)O3 were also systematically investigated by X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction and its Rietveld refinement results confirmed that Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics crystallised into an ilmenite-type with R-3 (148) space group. The replacement of the low valence Ti4+ by the high valence Nb5+ can improve the dielectric properties of Mg(Ti1-xNbx)O3 (x = 0–0.09). This paper also studied the different sintering temperatures for Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics. The obtained results proved that 1350 °C is the best sintering temperature. The permittivity and Q × f initially increased and then decreased mainly due to the effects of porosity caused by the sintering temperature and the doping amount of Nb2O5, respectively. Furthermore, the increased Q × f is correlated to the increase in Ti–O bond strength as confirmed by Raman spectroscopy, and the electrons generated by the oxygen vacancies will be compensated by Nb5+ to a certain extent to suppress Ti4+ to Ti3+, which was confirmed by XPS. The increase in τf from ?47 ppm/°C to ?40.1 ppm/°C is due to the increment in cell polarisability. Another reason for the increased τf is the reduction in the distortion degree of the [TiO6] octahedral, which was also confirmed by Raman spectroscopy. Mg(Ti0.95Nb0.05)O3 ceramics sintered at 1350 °C for 2 h possessed excellent microwave dielectric properties of εr = 18.12, Q × f = 163618 GHz and τf = ?40.1 ppm/°C.  相似文献   
4.
Increasing the dielectric loss capacity plays an important role in enhancing the electromagnetic absorption performance of materials. It remains a challenge to simultaneously introduce multiple types of dielectric losses in the material. In this work, we show that the atomic and interfacial dipole polarizations can be simultaneously enhanced by substituting N species into both carbon coating layers and bulk TiC lattices of a core-shell TiC@C material. Additionally, substitution of N species results more exposed TiC(111) facets and refines the TiC grain sizes in the bulk material, which is beneficial for enhancing the scattering of the external electromagnetic waves. The maximum reflection loss of the N substituted TiC@C material is measured as ?47.1 dB with an effective absorbing bandwidth of 4.83 GHz at 1.9 mm, which illustrates a valuable way to further tuning the electromagnetic absorption performance of this type of materials.  相似文献   
5.
The turbulent boundary layer control on NACA 0012 airfoil with Mach number ranging from 0.3 to 0.5 by a spanwise array of dielectric barrier discharge(DBD)plasma actuators by hot-film sensor technology is investigated.Due to temperature change mainly caused through heat produced along with plasma will lead to measurement error of shear stress measured by hot-film sensor,the correction method that takes account of the change measured by another sensor is used and works well.In order to achieve the value of shear stress change,we combine computational fluid dynamics computation with experiment to calibrate the hot-film sensor.To test the stability of the hot-film sensor,seven repeated measurements of shear stress at Ma = 0.3 are conducted and show that confidence interval of hot-film sensor measurement is from-0.18 to 0.18 Pa and the root mean square is 0.11 Pa giving a relative error 0.5%over all Mach numbers in this experiment.The research on the turbulent boundary layer control with DBD plasma actuators demonstrates that the control makes shear stress increase by about 6%over the three Mach numbers,which is thought to be reliable through comparing it with the relative error 0.5%,and the value is hardly affected by burst frequency and excitation voltage.  相似文献   
6.
高效率地使用工程车辆是工程项目管理中节约成本的有效方法,无人监管环境下工程车辆的工况识别,是实现工程车辆高效率使用的有效手段。目前以GPS等技术为核心的车辆智能管理系统未对工程车辆进行工况识别,提出一种基于GRU循环神经网络的工程车辆工况识别方法,通过对工程车辆在不同工况下产生的音频信号进行分析,从中提取Mel倒谱系数作为主要特征,构建GRU循环神经网络模型进行训练和识别。实验结果表明,该方法可以实现对工程车辆工况的有效识别。  相似文献   
7.
The study of shock wave propagation in a detonation chamber is of great importance as a part of the plate forming process. Investigations related to the effects of premixed gas detonation on the deflection of a plate require in-depth examination. An Eulerian-Lagrangian numerical simulation is conducted using the space-time conservation element and solution element method of LS-DYNA software to study the effect of confined multi-point ignited gaseous mixture on the dynamic response of thin plates clamped at the end of a combustion chamber. The FSI couples a Lagrangian finite element solver with a Eulerian fluid solver in a 2D space with detailed chemistry of H2–O2 mixture. The solution contains the detonation wave propagation through the combustion chamber and its interaction with the plate. The influence of variation in the multi-point ignition locations and combustion chamber dimensions on the pressure history and plate deflection is studied. To verify the model, a comparison with the experimental study is carried out using an adjustable model representative of the real experiment. The verified model is used to link the evolution of plate shape with the arrival time and intensity of shock waves within the chamber. It is found that a longer distance between the ignition point and the plate intensifies the ultimate deflection of the plate. In addition, a fairly large combustion area employed in a direction rather than transverse to the plate surface is unable to influence the ultimate deformation of the plate.  相似文献   
8.
The Markov model and the PEM electrolyzer system model for directly coupled photovoltaic are combined to construct an efficient and reliable working condition that fits the fluctuation characteristics of solar energy. The working condition is designed through genetic algorithm so that the average coupling efficiency of the system can reach 98.8%. Then, the durability and recovery test are conducted on the basis of the constructed conditions. It is found that the attenuation rate at the current density of 1A/cm2 under the photovoltaic fluctuating condition reached 7.8mV/h, which is twice that under the constant current condition. The charge transfer impedance (Rct) is the main factor leading to the degradation. It is proved by the recovery experiment that the increase of Rct is related to the pollution of metal ions. After pickling to remove some metal ions, Rct can be significantly reduced by 46.8% and 65.2%, respectively. After the durability test, the voltammetric charges under the photovoltaic fluctuating condition and the constant current condition are reduced by 48.3% and 19.1% It indicates that the photovoltaic fluctuation condition will accelerate the attenuation of the effective reaction area of MEA, which is irreversible even after pickling. It can be observed from the SEM images that the catalyst layer of MEA has more obvious peeling under the photovoltaic fluctuation condition, which is not conducive to material transmission and destroys the transmission channel of ions and electrons. This result can provide a reliable reference for the coupling design of PEM electrolyzer and renewable energy in the future.  相似文献   
9.
Current grain growth models have evolved to account for the relationship between grain boundary energy/mobility anisotropy and the five degrees of grain boundary character. However, the role of grain boundary networks on overall growth kinetics remains poorly understood. To experimentally investigate this problem, a highly textured Al2O3 was fabricated by colloidal casting in a strong magnetic field to engineer a unique spatial distribution of grain boundary character. Microstructural evolution was quantified and compared to an untextured sample. From this comparison, a prevalence of (0001)/(0001) terminated grain boundaries with anisotropic networks were identified in the textured sample. These boundaries and their networks were found to be driving grain growth at a faster rate than predicted by models. These findings will allow better modelling of grain growth in real systems by experimentally exploring the impact thereon of grain boundary plane anisotropy and relative energy/mobility differences between neighboring boundaries.  相似文献   
10.
《Ceramics International》2022,48(17):24454-24461
Enhancement of thermoelectric properties by virtue of decreased electrical resistance through grain boundary engineering is realised in this study. A robust strategy of optimisation of the transport properties by tuning the energy filtering effects at the interfaces by decreasing the interfacial electrical resistance is achieved in LaCoO3 (LCO). This is accomplished by the incorporation of multilayer graphene within the parent LCO matrix containing multi-scale nano/micro grains. The present work has attained a substantial increment in electrical conductivity from a value of 96 Scm-1 for bare LCO to ~5300 Scm-1 at 750 K by incorporating 0.08 wt% multilayer graphene in LCO. No significant change in thermal conductivity is observed due to the presence of multilayer graphene in LCO. A zT of 0.33 at 550 K for 0.08 wt% multi-layer graphene incorporated LCO composite is achieved which is the highest thermoelectric figure of merit value for undoped LCO reported until now.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号