首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9370篇
  免费   1236篇
  国内免费   696篇
电工技术   403篇
综合类   1029篇
化学工业   1153篇
金属工艺   998篇
机械仪表   630篇
建筑科学   777篇
矿业工程   268篇
能源动力   240篇
轻工业   311篇
水利工程   182篇
石油天然气   188篇
武器工业   85篇
无线电   2669篇
一般工业技术   1252篇
冶金工业   301篇
原子能技术   61篇
自动化技术   755篇
  2024年   16篇
  2023年   170篇
  2022年   231篇
  2021年   318篇
  2020年   376篇
  2019年   363篇
  2018年   277篇
  2017年   350篇
  2016年   388篇
  2015年   413篇
  2014年   588篇
  2013年   627篇
  2012年   748篇
  2011年   747篇
  2010年   569篇
  2009年   540篇
  2008年   533篇
  2007年   603篇
  2006年   557篇
  2005年   462篇
  2004年   400篇
  2003年   321篇
  2002年   233篇
  2001年   229篇
  2000年   210篇
  1999年   183篇
  1998年   130篇
  1997年   139篇
  1996年   106篇
  1995年   106篇
  1994年   72篇
  1993年   61篇
  1992年   57篇
  1991年   32篇
  1990年   37篇
  1989年   25篇
  1988年   24篇
  1987年   10篇
  1986年   11篇
  1985年   10篇
  1984年   7篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(2):1889-1897
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) are considered to be one of the most promising materials in the electromagnetic (EM) stealth of aero-engines, which is expected to achieve strong absorption and broad-band performance. Multiscale structural design was applied to SiCf/Si3N4–SiOC composites by construction of micro/nanoscale heterogeneous interfaces and macro double-layer impedance matching structure. SiCf/Si3N4–SiOC composites were fabricated by using SiC fibers with different conductivities and SiOC–Si3N4 matrices with gradient impedance structures to improve impedance matching effectively. Owing to its unique structure, SiCf/Si3N4–SiOC composites (A3-composites) achieved excellent EM wave absorption performance with a minimum reflection coefficient (RCmin) of ?25.1 dB at 2.45 mm and an effective absorption bandwidth (EAB) of 4.0 GHz at 2.85 mm in X-band. Moreover, double-layer SiCf/Si3N4–SiOC with an improved impedance matching structure obtained an RCmin of ?56.9 dB and an EAB of 4.2 GHz at 3.00 mm, which means it can absorb more than 90% of the EM waves in the whole X-band. The RC is less than ?8 dB at 2.6–2.8 mm from RT to 600 °C in the whole X-band, displaying excellent high-temperature absorption performance. The results provide a new design opinion for broad-band EM absorbing SiCf-CMCs at high temperatures.  相似文献   
2.
Cyclodextrins (CyDs) are water-soluble host molecules possessing a nanosized hydrophobic cavity. In the realm of molecular recognition, this cavity is used not only as a recognition site but also as a reaction medium, where a hydrophobic sensor recognizes a guest molecule. Based on the latter concept, we have designed a novel supramolecular sensing system composed of Zn(II)-dipicolylamine metal complex-based azobenzene (1-Zn) and 3A-amino-3A-deoxy-(2AS,3AS)-γ-cyclodextrin (3-NH2-γ-CyD) for sensing adenosine-5′-triphosphate (ATP). 1-Zn showed redshifts in the UV-Vis spectra and induced circular dichroism (ICD) only when both ATP and 3-NH2-γ-CyD were present. Calculations of equilibrium constants indicated that the amino group of 3-NH2-γ-CyD was involved in the formation of supramolecular 1-Zn/3-NH2-γ-CyD/ATP. The Job plot of the ICD spectral response revealed that the stoichiometry of 1-Zn/3-NH2-γ-CyD/ATP was 2:1:1. The pH effect was examined and 1-Zn/3-NH2-γ-CyD/ATP was most stable in the neutral condition. The NOESY spectrum suggested the localization of 1-Zn in the 3-NH2-γ-CyD cavity. Based on the obtained results, the metal coordination interaction of 1-Zn and the electrostatic interaction of 3-NH2-γ-CyD were found to take place for ATP recognition. The “reaction medium approach” enabled us to develop a supramolecular sensing system that undergoes multi-point interactions in water. This study is the first step in the design of a selective sensing system based on a good understanding of supramolecular structures.  相似文献   
3.
Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides to modulate multiple signaling events in cells. PDEs are recognized to actively associate with cyclic nucleotide receptors (protein kinases, PKs) in larger macromolecular assemblies referred to as signalosomes. Complexation of PDEs with PKs generates an expanded active site that enhances PDE activity. This facilitates signalosome-associated PDEs to preferentially catalyze active hydrolysis of cyclic nucleotides bound to PKs and aid in signal termination. PDEs are important drug targets, and current strategies for inhibitor discovery are based entirely on targeting conserved PDE catalytic domains. This often results in inhibitors with cross-reactivity amongst closely related PDEs and attendant unwanted side effects. Here, our approach targeted PDE–PK complexes as they would occur in signalosomes, thereby offering greater specificity. Our developed fluorescence polarization assay was adapted to identify inhibitors that block cyclic nucleotide pockets in PDE–PK complexes in one mode and disrupt protein-protein interactions between PDEs and PKs in a second mode. We tested this approach with three different systems—cAMP-specific PDE8–PKAR, cGMP-specific PDE5–PKG, and dual-specificity RegA–RD complexes—and ranked inhibitors according to their inhibition potency. Targeting PDE–PK complexes offers biochemical tools for describing the exquisite specificity of cyclic nucleotide signaling networks in cells.  相似文献   
4.
Within a circular economy approach, this study investigates the environmental impact of lightweight aggregates (LWAs) produced starting from different mixes of different clays with brewery sludge and cattle bone flour ash (CBA), used as poring and fertilizing agents, respectively. The environmental impact was evaluated by means of release tests, insulation capacity, carbon footprint (CFP), and particulate matter emission during pellet firing. Release tests representative of LWAs realistic application showed very high release of phosphate and satisfactory release of potassium. The thermal insulation of the LWAs was tested by thermal imaging camera and resulted highly variable depending on the composition, with the mix containing CBA performing best. This latter composition leads also to the smallest CO2 equivalent emission, due to the calorific power of CBA, allowing lower consumption of fossil fuels during the LWA production. Finally, total particulate emissions during the thermal treatment resulted similar in terms of mass for all mixes, while differences in terms of particle morphology and composition occurred. Samples containing residue resulted with a quite good release behavior, CFP, and insulation properties, but higher emission of particles, particularly when glass is added.  相似文献   
5.
It is believed that promoting the fraction of ferroelectric orthorhombic phase (o-phase) through O-poor growth conditions can increase the spontaneous polarization of HfO2 and (Hf,Zr)O2 thin films. However, the first-principles calculations show that the growth may be limited by the easy formation of point defects in the orthorhombic and tetragonal phases of HfO2, ZrO2, and (Hf,Zr)O2. Their dominant defects, O interstitial (Oi) under O-rich conditions and O vacancy (VO) under O-poor condition, have low formation energies and quite high density (1016–1019 cm−3 for 800–1400 K growth temperature). Especially, Oi has negative formation energy in tetragonal HfO2 under O-rich condition, causing non-stoichiometry and limiting the crystalline-seed formation during o-phase growth. High-density defects can cause disordering of dipole moments and increase leakage current, both diminishing the polarization. These results explain the experimental puzzle that the measured polarization is much lower than the ideal value even in O-poor thin films and highlight that controlling defects is as important as promoting the o-phase fraction for enhancing ferroelectricity. The O-intermediate condition (average of O-rich and O-poor conditions) and low growth temperature are proposed for fabricating HfO2 and (Hf,Zr)O2 with fewer defects, lower leakage current, and stronger ferroelectricity, which challenges the belief that O-poor condition is optimal.  相似文献   
6.
The quantitative optical measurement of deep sub-wavelength features with sub-nanometer sensitivity addresses the measurement challenge in the semiconductor fabrication process. Optical scatterings from the sidewalls of patterned devices reveal abundant structural and material information. We demonstrated a parametric indirect microscopic imaging (PIMI) technique that enables recovery of the profile of wavelength-scale objects with deep sub-wavelength resolution, based on measuring and filtering the variations of far-field scattering intensities when the illumination was modulated. The finite-difference time-domain (FDTD) numerical simulation was performed, and the experimental results were compared with atomic force microscopic (AFM) images to verify the resolution improvement achieved with PIMI. This work may provide a new approach to exploring the detailed structure and material properties of sidewalls and edges in semiconductor-patterned devices with enhanced contrast and resolution, compared with using the conventional optical microscopy, while retaining its advantage of a wide field of view and relatively low cost.  相似文献   
7.
《Ceramics International》2022,48(11):15791-15799
With the aim to understand electric polarization mechanisms of β-tricalcium phosphate as an advanced biomaterial, Na ion-substituted β-Ca3(PO4)2 (Na-β-TCPs) ceramics with controlled lattice vacancies were synthesized and structural refinement was performed by the Rietveld method. The Rietveld analysis revealed that Ca and vacancies at Ca(4) sites in the β-TCP structure decreased with an increase in Na substitution. Electrical measurements by the complex impedance method revealed that the conductivity and the activation energy calculated from Cole-Cole plots rapidly decreased to a constant value with an increase in Na substitution and decrease in vacancies. The thermally stimulated depolarization current (TSDC) curve of the electrically polarized Na-β-TCP showed one large peak at 530–610 °C. However, the accumulated charge decreased with an increase in Na ions and decrease in vacancies up to 2.37 mol%, after which it became constant. These results are consistent with the presumed formation of a dipole moment between aligned Ca2+ ions and their vacancies along the direction of the external polarization field applied at high temperature. We conclude that the large amount of stored charge in β-TCP caused by electrical polarization is due to the low site occupancy of calcium ions and vacancies at Ca(4) sites in the β-TCP structure, which is not the case for hydroxyapatite (HAp), as previously reported.  相似文献   
8.
9.
Dense granule proteins (GRAs) are essential components in Toxoplasma gondii, which are suggested to be promising serodiagnostic markers in toxoplasmosis. In this study, we investigated the function of GRA9 in host response and the associated regulatory mechanism, which were unknown. We found that GRA9 interacts with NLR family pyrin domain containing 3 (NLRP3) involved in inflammation by forming the NLRP3 inflammasome. The C-terminal of GRA9 (GRA9C) is essential for GRA9–NLRP3 interaction by disrupting the NLRP3 inflammasome through blocking the binding of apoptotic speck-containing (ASC)-NLRP3. Notably, Q200 of GRA9C is essential for the interaction of NLRP3 and blocking the conjugation of ASC. Recombinant GRA9C (rGRA9C) showed an anti-inflammatory effect and the elimination of bacteria by converting M1 to M2 macrophages. In vivo, rGRA9C increased the anti-inflammatory and bactericidal effects and subsequent anti-septic activity in CLP- and E. coli- or P. aeruginosa-induced sepsis model mice by increasing M2 polarization. Taken together, our findings defined a role of T. gondii GRA9 associated with NLRP3 in host macrophages, suggesting its potential as a new candidate therapeutic agent for sepsis.  相似文献   
10.
针对当前基于深度学习的显著性检测算法缺少利用先验特征和边缘信息,且在复杂场景中难以检测出鲁棒性强的显著性区域的问题,提出了一种结合边缘特征,利用先验信息引导的全卷积神经网络显著性检测算法。该算法利用三种被经常用到的先验知识结合边缘信息形成先验图,通过注意力机制将提取的先验特征与深度特征有效融合,最终通过提出的循环卷积反馈优化策略迭代地学习改进显著性区域,从而产生更可靠的最终显著图预测。经过实验定性定量分析,对比证明了算法的可靠性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号