首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226049篇
  免费   29605篇
  国内免费   25671篇
电工技术   21669篇
技术理论   8篇
综合类   17453篇
化学工业   43710篇
金属工艺   10785篇
机械仪表   14016篇
建筑科学   11411篇
矿业工程   4138篇
能源动力   7727篇
轻工业   16646篇
水利工程   3610篇
石油天然气   6698篇
武器工业   2533篇
无线电   32539篇
一般工业技术   25053篇
冶金工业   6867篇
原子能技术   4349篇
自动化技术   52113篇
  2024年   516篇
  2023年   3459篇
  2022年   6052篇
  2021年   7982篇
  2020年   7875篇
  2019年   6977篇
  2018年   6566篇
  2017年   9012篇
  2016年   9934篇
  2015年   11354篇
  2014年   11960篇
  2013年   15394篇
  2012年   17678篇
  2011年   19629篇
  2010年   14183篇
  2009年   13920篇
  2008年   14936篇
  2007年   16847篇
  2006年   15853篇
  2005年   13567篇
  2004年   11487篇
  2003年   9171篇
  2002年   7016篇
  2001年   5347篇
  2000年   4247篇
  1999年   3504篇
  1998年   2906篇
  1997年   2339篇
  1996年   2078篇
  1995年   1802篇
  1994年   1542篇
  1993年   1169篇
  1992年   969篇
  1991年   771篇
  1990年   649篇
  1989年   489篇
  1988年   363篇
  1987年   228篇
  1986年   219篇
  1985年   270篇
  1984年   230篇
  1983年   159篇
  1982年   216篇
  1981年   111篇
  1980年   117篇
  1979年   28篇
  1978年   25篇
  1977年   27篇
  1975年   21篇
  1959年   26篇
排序方式: 共有10000条查询结果,搜索用时 23 毫秒
1.
Through a facile hydrothermal method, we have successfully prepared Ti3C2/Bi2.15WO6 (TC/BWO) composite, and systematically investigated their reactivity for the photocatalytic reduction of Cr(VI) under visible light. X-ray diffraction and Raman analysis confirm the formation of heterostructure between Bi2.15WO6 and Ti3C2. The resultant 7TC/BWO composite exhibits enhanced photoactivity toward Cr(VI) reduction. After 120 min irradiation, the conversion of Cr(VI) reaches 92.5% with the quasi-first-order kinetic constant of k = 0.0145 min?1, which is higher than that of pure BWO (30% and k = 0.0005 min?1). The electrochemical and photoluminescent characterization confirm that the introduction of Ti3C2 is conducive to the separation of carriers, thus significantly improves the photocatalytic performance of TC/BWO. Furthermore, the radical capture experiments verify that the electrons are important for enhancing reduction of Cr(VI) to Cr(III). As a result, this research provides a comprehensive understanding of the reduction of Cr(VI) by TC/BWO composite under visible light.  相似文献   
2.
Sealing performance between two contacting surfaces is of significant importance to stable operation of proton exchange membrane (PEM) fuel cells. In this work, an analytical micro-scale approach is first established to predict the gas leakage in fuel cells. Gas pressure and uneven pressure distribution at the interface are also included in the model. At first, the micro tortuous leakage path at the interface is constructed by introducing contact modelling and fractal porous structure theory. In order to obtain the leakage at the entire surface, contact pressure distribution is predicted based on bonded elastic layer model. The gas leakage through the discontinuous interface can be obtained with consideration of convection and diffusion. Then, experiments are conducted to validate the numerical model, and good agreement is obtained between them. Finally, influences of surface topology, gasket compression and gasket width on leakage are studied based on the model. The results show that gas leakage would be greatly amplified when the asperity standard deviation of surface roughness exceeds 1.0 μm. Gaskets with larger width and smaller thickness are beneficial to sealing performance. The model is helpful to understand the gas leakage behavior at the interface and guide the gasket design of fuel cells.  相似文献   
3.
The fuel cell/battery durability and hybrid system stability are major considerations for the power management of fuel cell hybrid electric bus (FCHEB) operating on complicated driving conditions. In this paper, a real time nonlinear adaptive control (NAC) with stability analyze is formulated for power management of FCHEB. Firstly, the mathematical model of hybrid power system is analyzed, which is established for control-oriented design. Furthermore, the NAC-based strategy with quadratic Lyapunov function is set up to guarantee the stability of closed-loop power system, and the power split between fuel cell and battery is controlled with the durability consideration. Finally, two real-time power management strategies, state machine control (SMC) and fuzzy logic control (FLC), are implemented to evaluate the performance of NAC-based strategy, and the simulation results suggest that the guaranteed stability of NAC-based strategy can efficiently prolong fuel cell/battery lifespan and provide better fuel consumption economy for FCHEB.  相似文献   
4.
Highly-efficient and stable non-noble metal electrocatalysts for overcoming the sluggish kinetics of oxygen evolution reaction (OER) is urgent for water electrolysis. Biomass-derived biochar has been considered as promising carbon material because of its advantages such as low-cost, renewable, simple preparation, rich structure, and easy to obtain heteroatom by in-situ doping. Herein, Ni2P–Fe2P bimetallic phosphide spherical nanocages encapsulated in N/P-doped pine needles biochar is prepared via a simple two-step pyrolysis method. Benefiting from the maximum synergistic effects of bimetallic phosphide and biochar, high conductivity of biochar encapsulation, highly exposed active sites of Ni2P–Fe2P spherical nanocages, rapid mass transfer in porous channels with large specific surface area, and the promotion in adsorption of reaction intermediates by high-level heteroatom doping, the (Ni0.75Fe0.25)2P@NP/C demonstrates excellent OER activity with an overpotential of 250 mV and a Tafel slope of 48 mV/dec at 10 mA/cm2 in 1 M KOH. Also it exhibits a long-term durability in 10 h electrolysis and its activity even improves during the electrocatalytic process. The present work provides a favorable strategy for the inexpensive synthesis of biochar-based transition metal electrocatalysts toward OER, and improves the water electrolysis for hydrogen production.  相似文献   
5.
6.
This work describes facile synthesis of a porous polymeric material ( T-HCP ) using readily available reagents. Specifically, T-HCP is a thermally stable and hypercrosslinked polymer (HCP) that is essentially microporous with a high BET specific surface area (940 m2 g?1). Triptycene based polymers are known to feature internal free volume. Thus, the incorporation of triptycene units and extensive crosslinking by an external cross-linker in T-HCP makes it a promising adsorbent for small gas capture applications. Experimental results show that T-HCP demonstrated good CO2 capture capacity of 132 mg g?1 (273 K, 1 bar). Molecular hydrogen storage capacity of T-HCP is estimated to be 17.7 mg g?1 (77 K, 1 bar). T-HCP revealed high CO2/N2 selectivity (up to 63) as well as promising CO2/CH4 (up to 9.1) selectivity suggesting its potential applicability for CO2 separation from flue and natural gases.  相似文献   
7.
建立高效液相色谱法测定化妆品中依克多因的分析方法,采用Agilent Poroshell 120 EC-C18色谱柱(100 mm×3.0 mm,2.7μm)分离,以甲醇和p H为3.0的40 mmol/L磷酸二氢钠-10 mmol/L 1-庚烷磺酸钠缓冲溶液梯度洗脱,流速0.8 m L/min,柱温30℃,检测波长210 nm。采用外标法定量测定化妆品中的依克多因含量。结果表明,依克多因在5~800 mg/L的质量浓度范围内呈现良好线性关系,相关系数为0.999 8,方法的检出限和定量限分别为0.3和1.0 mg/L。该方法具有分离效率高、分析时间短、节省溶剂等优点,解决了依克多因在C18色谱柱上保留弱的问题。  相似文献   
8.
《Ceramics International》2022,48(11):14987-14992
The ceramic compound CaMoO4 is synthesized via a solid-state reaction technique. Rietveld refinement studies were done on the powder X-ray diffraction data of CaMoO4 and revealed that the compound is crystallized in the tetragonal Scheelite structure with I41/a space group. The differential scanning calorimetry (DSC) studies on CaMoO4 divulged an anomaly around 440 °C. This anomaly is further probed using the temperature-dependent Raman and dielectric spectroscopic measurements and are corroborating with the results obtained from DSC. A detailed investigation on the temperature-dependent Raman spectroscopic data revealed that the A1g mode of CaMoO4 showed a soft phonon behavior up to the phase transition temperature. It is observed that the A1g mode displayed phonon hardening behavior with further increasing the temperature. The anomaly is attributed to an isostructural phase transition (IPT), a rarely observed phenomenon in the compounds with Scheelite structure. The IPT in CaMoO4 is elucidated with a phonon softening mechanism.  相似文献   
9.
《Ceramics International》2022,48(21):31695-31704
In this study, ceramic membranes made of montmorillonite, perlite and iron were used to remove As(III) from water. Membranes prepared with 0.0, 0.5, 1.0, and 1.5 wt% of iron content were used to filtrate As(III) synthetic water and surface water solutions. As(III) adsorption capacity and removal efficiency, and other parameters such as cations and anions content, turbidity, pH, electrical conductivity were used to evaluate the membranes' performance. Results show that the As(III) adsorption/removal capacity of membranes was improved by the addition of iron. Adsorption capacity of 7.5 μg As(III)/g and removal efficiency of 97% can be achieved in membranes with 1.0 wt% of iron filings content for surface water; however, a greater amount of iron in the membrane structure limits the adsorption capacity of As(III). Besides the capacity of ceramic membranes to adsorb/remove As(III), membranes were also effective to remove other ions, turbidity, and electrical conductivity from the surface water. The addition of iron to the ceramic membranes enhanced their capacity to remove such surface water constituents. These results are important from the practical viewpoint showing the potential of ceramic membranes for the removal of metalloids and other water constituents. Langmuir isotherm model best described the adsorption process in ceramic membranes, suggesting that adsorption of As(III) happened on a monolayered surface of the ceramic membrane.  相似文献   
10.
Hydrogen transportation by pipelines gradually becomes a critical engineering route in the worldwide adaptation of hydrogen as a form of clean energy. However, due to the hydrogen embrittlement effect, the compatibility of linepipe steels and associated welds with hydrogen is a major concern when designing hydrogen-carrying pipelines. When hydrogen enters the steels, their ductility, fracture resistance, and fatigue properties can be adversely altered. This paper reviews the status of several demonstration projects for natural gas-hydrogen blending and pure hydrogen transportation, the pipeline materials used and their operating parameters. This paper also compares the current standards of materials specifications for hydrogen pipeline systems from different parts of the world. The hydrogen compatibility and tolerance of varying grades of linepipe steels and the relevant testing methods for assessing the compatibility are then discussed, and the conservatism or the inadequacies of the test conditions of the current standards are pointed out for future improvement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号