首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  完全免费   1篇
  无线电   6篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
排序方式: 共有6条查询结果,搜索用时 23 毫秒
1
1.
一种基于卷积神经网络的性别识别方法   总被引:1,自引:0,他引:1  
采用人工智能进行性别识别时,人脸图像在获取的时候容易受到光照、遮挡等影响,这些因素给人脸性别识别带来了困难。采用卷积神经网络用于性别识别,并通过扩展网络结构,进一步增强卷积神经网络的分类能力。并且对识别效果进行置信度分析,通过设置卷积神经网络的拒识区域来解决拒绝区间的问题。在实际测试中,通过拒绝7.46%的测试样本,达到98.67%的正确识别率。  相似文献
2.
3.
程嘉远 《现代雷达》2018,40(8):55-59
深度学习是当前人工神经网络领域的研究热点,广泛应用于字符识别、图像识别和语音识别等应用中。雷达通信目标识别是通信对抗的前提和关键。文中分析了模板匹配法、DS证据理论等传统通信目标识别方法的在特征提取、模型表达方面的不足,对深度学习神经网络在通信目标识别中的应用进行了初步探讨,并提出了一种基于深度学习的通信目标识别框架。该框架和思路同样适用于雷达对抗目标识别等问题,可为深度学习在雷达目标识别领域的应用提供支撑。  相似文献
4.
传统的SAR目标检测算法容易受到复杂背景的干扰,因此利用被广泛应用于图像目标检测和识别领域的Faster-RCNN方法,对复杂背景下的SAR图像进行车辆目标检测实验。在对样本数据进行预处理后对车辆真实位置进行标记,采用可视化的深度学习客户端对样本进行裁剪和旋转,扩充样本数据库。利用已充分训练的模型权重对ZF和VGG-16网络进行预训练,再利用扩充的数据集进行训练和验证,并使用包含MiniSAR数据的测试集进行测试。实验证明,ZF网络和VGG-16的检测效果类似,但是ZF网络因为网络层数更少因而检测耗时更短。  相似文献
5.
近年来,卷积神经网络(Convolutional Neural Network,CNN)在合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标分类中取得了较好的分类结果。CNN结构中,前面若干层由交替的卷积层、池化层堆叠而成,后面若干层为全连接层。全卷积神经网络(All Convolutional Neural Network, A-CNN)是对CNN结构的一种改进,其中池化层和全连接层都用卷积层代替,该结构已在计算机视觉领域被应用。针对公布的MSTAR数据集,提出了基于A-CNN的SAR图像目标分类方法,并与基于CNN的SAR图像分类方法进行对比。实验结果表明,基于A-CNN的SAR图像目标分类正确率要高于基于CNN的分类正确率。  相似文献
6.
基于计算机视觉的疲劳检测具有低侵入性、低成本 的优点,然而光照变化、面部表情、复杂背景等 仍然对检测率造成很大的影响。以卷积神经网络为代表的深度学习以其较强的特征提取能力 和鲁棒性在模 式识别领域取得了成功的应用。本文提出了一种基于级联卷积神经网络(CNN)结构的疲劳检 测算法。首先训练第 1级网络实现人眼与非人眼的分类,使网络充分学习人眼特征,当输入目标图像时,人眼区 域能快速从第 一级网络特征图中分离出来;然后将人眼图像传送给第2级网络检测眼部特征点位置,计算 眼睛张开度并 以此判断测试者眼睛状态,构造疲劳检测模型;最后根据连续多帧的眼睛状态序列,判断测 试者是否处于疲 劳状态。在检测误差为5%时,眼部4个特征点的平均检测正确率为93.10%,单点检测正确率 最高可达97.14%。 测试结果表明,在本文提出方法下眼睛的清醒和疲劳状态有明显的不同,证明本文提出的方 法有效可行,具有较好的应用前景。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号