首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18059篇
  免费   2107篇
  国内免费   1073篇
电工技术   1090篇
综合类   1206篇
化学工业   2772篇
金属工艺   377篇
机械仪表   1256篇
建筑科学   1106篇
矿业工程   221篇
能源动力   505篇
轻工业   1051篇
水利工程   79篇
石油天然气   882篇
武器工业   127篇
无线电   5857篇
一般工业技术   2823篇
冶金工业   303篇
原子能技术   254篇
自动化技术   1330篇
  2024年   35篇
  2023年   303篇
  2022年   405篇
  2021年   627篇
  2020年   672篇
  2019年   658篇
  2018年   550篇
  2017年   743篇
  2016年   762篇
  2015年   792篇
  2014年   1223篇
  2013年   1096篇
  2012年   1245篇
  2011年   1338篇
  2010年   1082篇
  2009年   1104篇
  2008年   1023篇
  2007年   1114篇
  2006年   1038篇
  2005年   913篇
  2004年   765篇
  2003年   704篇
  2002年   481篇
  2001年   440篇
  2000年   397篇
  1999年   294篇
  1998年   242篇
  1997年   194篇
  1996年   170篇
  1995年   129篇
  1994年   152篇
  1993年   130篇
  1992年   75篇
  1991年   62篇
  1990年   59篇
  1989年   37篇
  1988年   31篇
  1987年   14篇
  1986年   23篇
  1985年   24篇
  1984年   25篇
  1983年   17篇
  1982年   19篇
  1981年   3篇
  1979年   3篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1959年   3篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
1.
《Ceramics International》2022,48(6):7605-7612
In recent work, pure α-Fe2O3 (F-1) and series of 5% Cu doped Fe2O3 (CF-5) , 10% Cu doped Fe2O3 (CF-10) and 15% Cu doped Fe2O3 (CF-15) nanoparticles by facile chemical coprecipitation method were synthesized to study the effect of concentration of doping for photocatalytic activity. As prepared F-1, CF-5, CF-10, CF-15 nanoparticles were subjected to X-ray diffraction (XRD) and Fourier transform infra-red (FTIR) techniques to analyse the structural and functional groups features. These characterization techniques confirmed the successful doping of Cu 2+ ions in α-Fe2O3. The crystallite size of synthesized samples was calculated by Scherrer formula. Gradually decline in crystallite size from 18 to 15 nm was observed for undoped to doped samples. Scanning electron microscopic (SEM) analysis expressed that doping of Cu reduced the aggregation of particles and enhanced the surface area of nanoparticles. UV–Visible spectroscopic analysis of synthesized samples was used to calculate the bandgap energy of F-1, CF-5, CF-10, CF-15 nanoparticles i.e., 2.0, 1.7, 1.5, 1.4eV respectively. Narrowing bandgap energy of doped hematite supported to perform excellent photocatalytic activity. Maximum degradation of methylene blue was recorded via CF-10 within 140 min. Higher degradation rate of methylene blue by optimal concentration of CF-10 is due to effective electron trapping ability of photocatalyst.  相似文献   
2.
Food- and waterborne viruses, such as human norovirus, hepatitis A virus, hepatitis E virus, rotaviruses, astroviruses, adenoviruses, and enteroviruses, are major contributors to all foodborne illnesses. Their small size, structure, and ability to clump and attach to inanimate surfaces make viruses challenging to reduce or eliminate, especially in the presence of inorganic or organic soils. Besides traditional wet and dry methods of disinfection using chemicals and heat, emerging physical nonthermal decontamination techniques (irradiation, ultraviolet, pulsed light, high hydrostatic pressure, cold atmospheric plasma, and pulsed electric field), novel virucidal surfaces, and bioactive compounds are examined for their potential to inactivate viruses on the surfaces of foods or food contact surfaces (tools, equipment, hands, etc.). Every disinfection technique is discussed based on its efficiency against viruses, specific advantages and disadvantages, and limitations. Structure, genomic organization, and molecular biology of different virus strains are reviewed, as they are key in determining these techniques effectiveness in controlling all or specific foodborne viruses. Selecting suitable viral decontamination techniques requires that their antiviral mechanism of action and ability to reduce virus infectivity must be taken into consideration. Furthermore, details about critical treatments parameters essential to control foodborne viruses in a food production environment are discussed, as they are also determinative in defining best disinfection and hygiene practices preventing viral infection after consuming a food product.  相似文献   
3.
The photocatalytic evolution of H2 over La2O3 decorated TiO2 catalyst was examined under solar light. It was observed that during the course of the reaction, the transformation of La2O3/TiO2 into La2O3–TiO2–La2O2CO3 occurred and these species effectively suppressed electron-hole pair recombination by forming electron trapping centres on the surface, resulting in an increased visible light absorption and improved H2 yield. The 2 wt%La2O3/TiO2 nanocomposite demonstrated better H2 yield (~8.76 mmol (gcat)?1) than the bare TiO2 (~1.1 mmol (gcat)?1). The catalyst was stable even after several consecutive recycles with no substantial loss of hydrogen production rate. The H2 rates were correlated with the physicochemical characteristics of the catalysts examined by BET–SA, H2-TPR, XRD, UV-DRS, Raman spectroscopy, FTIR, HRTEM, EPR and PL spectroscopy.  相似文献   
4.
Accurate measurements of radiation dose are essential prerequisites for the safe and effective use of ionizing radiation in diagnostic and therapeutic medical applications. Recently, dosimeters based on organic polymers have been developed for this purpose. In this work, Poly(3-hexylthiophene-2,5-diyl) (P3HT) based organic diodes were evaluated as potential radiation dosimeters by quantifying the radiation-induced photocurrent under various measurement conditions. Control devices were fabricated in which the P3HT was replaced by polystyrene (PS) for the purpose of quantifying the non-photocurrent contribution to the measured signal. Net photocurrent was determined by subtracting the signal from the PS devices from the signal in the P3HT devices under identical measurement conditions. The responses of these devices were tested in various beam qualities: 100 kVp, 180 kVp, 300 kVp and 6 MV, 18 MV photons. The influences of electric field, film thickness and dose rate on dosimeter sensitivity were investigated. The diodes produced a linear increase in current with increasing dose rate. They demonstrated an increase in sensitivity with increased instantaneous dose rate and an increase in sensitivity at the lowest average dose rates studied here. The sensitivities for different energies were 22.9 nC/Gy, 21.8 nC/Gy and 21.4 nC/Gy for 100 kVp, 180 kVp and 300 kVp, respectively; and 14.5 nC/Gy, 14.7 nC/Gy for 6 MV and 18 MV, respectively for device with P3HT thickness 29 μm.  相似文献   
5.
In this paper, Zn-doped VO2 nanoparticles have been successfully fabricated by a two-step hydrothermal-annealing process, and the thermally induced visible light transmittance enhancement of Zn-doped VO2 has been studied for the first time. It is found that Zn-doped VO2 not only exhibits excellent solar modulation ability (ΔTsol = 15.27%) but also can reduce the phase transition temperature and increase the visible light transmittance after the heat-induced phase transition (ΔTlum=+5.78%). Moreover, with the increase of Zn doping concentration, the phase transition temperature (Tc) and phase transition hysteresis (ΔT) both decrease. It is shown that the Zn-doped VO2-PU films not only have good solar light modulation ability and properties of improving visible light transmission after phase transition, but also have good durability. The research result is of great significance for improving the visible light transmittance after phase transition and realizing the practical application of VO2 in the field of smart windows.  相似文献   
6.
A facile strategy for the introduction of tert-butyl and hexyl chains to the indolo[3,2,1-jk]carbazole scaffold is presented. With these building blocks six materials based on three different 4,4′-bis(N-carbazolyl)-1,1-biphenyl derivatives with varying degree of planarization were prepared. Characterization of the materials showed that the alkyl chains have only minor effects on the photophysical properties of the compounds. In contrast, thermal robustness towards decomposition and electrochemical stability are increased by the introduced alkyl chains. Detailed investigation of the solubility in five different solvents revealed that the incorporation of the alkyl chains increases the solubility significantly. The increased solubility of the materials allowed the application as host materials in red, green and sky-blue solution processed phosphorescent organic light emitting diodes. Hence, this work presents the first solution processed light emitting devices based on the indolo[3,2,1-jk]carbazole scaffold.  相似文献   
7.
The spongy nickel oxide (SNO) was synthesized the solution combustion method. The SNO was selected as a promoter to boost the catalytic activity of nanoraspberry-like palladium (NRPd) toward electrooxidation of five light fuels (LFs): methanol, ethanol, formaldehyde, formic acid, and ethylene glycol. The X-ray powder diffraction, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy, and field emission scanning electron microscope techniques were used for the materials characterization. In comparison with nonpromoted Pd, the NRPd-SNO electrocatalyst shown an excellent efficiency in parameters like the electrochemical active surface area and anti-CO poisoning behavior. The turnover data and the parameters, including reaction order, activation energy, and the coefficients of electron transfer and diffusion, were evaluated for the each process of LFs electrooxidation. The outcome for NRPd-SNO activity toward LFs electrooxidation was compared to some reported electrodes. The SNO increases the removal of intermediates created in the oxidation of LFs that can poison the surface of palladium catalyst. This is due to the presence of the lattice oxygens in SNO structure and Ni switching between its high and low valances. The compatibility of the adsorption process of LFs on the surface of the NRPd-SNO catalyst with different isotherms was determined by studying the Tafel polarization and calculating the surface coverage.  相似文献   
8.
The anatomical variations of two plants from the Nyctaginaceae family, Bougainvillea spectabilis and Bougainvillea glabra, were studied using light and scanning electron microscopy methods in this work. Bougainvillea is a dicotyledonous with defensive traits that can withstand extreme (hot and dry) settings; according to the findings, crystal inclusions in cells, woody spines, and an abnormal development pattern are all features that help them survive against predators and are unique to this species. The Bougainvillea plant's leaves are arranged in simple pattern, alternate to each other along stem having an undulate leaves edge and an oval form. The xylem and phloem, palisade, parenchyma midrib, spongy mesophyll, raphide crystal bundles, and trichomes were all visible when bracts and leaves were transversally sectioned and dyed with toluidine blue O (TBO). The presence of crystals was confirmed by a detailed examination of the transverse leaves by using bright-field and cross-polarizing microscopy. Dissecting microscopic examination showed that all the leaves revealed leaves venation pattern that had midvein, lateral veins areoles, and trichomes. Although trichomes have been identified on both sides, a closer look at a cleaned leaf dyed with TBO showed multicellular abundant trichomes on adaxial surface. Stomata complexes were typically found on the abaxial surface of the leaf according to epidermal peels. Present studies also showed that on adaxial side, stomata were lesser in number or were absent and also showed that the morphologies of the pavement cells on the adaxial and abaxial sides of the leaf differed.  相似文献   
9.
There are claims that multi‐chromatic displays can achieve a wider color gamut by the use of additional highly saturated secondary color channels. However, there are other claims that these displays lose lightness and/or color saturation at brighter levels. These apparently divergent views have led to some controversy in the display industry and at standard setting organizations. This study examines the color gamut volume for a variety of simulated and measured multi‐chromatic (sometimes incorrectly referred to as “multi‐primary”) displays using combinations of white and/or secondary color channels, such as cyan, magenta, and yellow. Furthermore, a two‐dimensional gamut representation, referred to as “gamut rings,” is introduced to illustrate that the addition of nonprimary optical color channels to a trichromatic (RGB) display can result in a significant decrease in the chroma at higher lightness levels. The additional saturated color channels can increase the gamut volume only around their hues at darker levels. The results also confirm the validity of comparing the color light output and white light output for revealing the design trade‐offs between the high‐peak white and the color‐image brightness for multi‐chromatic displays.  相似文献   
10.
We used perceptual and oculomotor measures to understand the negative impacts of low (phantom array) and high (motion blur) duty cycles with a high‐speed, AR‐likehead‐mounted display prototype. We observed large intersubject variability for the detection of phantom array artifacts but a highly consistent and systematic effect on saccadic eye movement targeting during low duty cycle presentations. This adverse effect on saccade endpoints was also related to an increased error rate in a perceptual discrimination task, showing a direct effect of display duty cycle on the perceptual quality. For high duty cycles, the probability of detecting motion blur increased during head movements, and this effect was elevated at lower refresh rates. We did not find an impact of the temporal display characteristics on compensatory eye movements during head motion (e.g., VOR). Together, our results allow us to quantify the tradeoff of different negative spatiotemporal impacts of user movements and make subsequent recommendations for optimized temporal HMD parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号