首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11376篇
  免费   2264篇
  国内免费   1220篇
电工技术   561篇
技术理论   1篇
综合类   683篇
化学工业   1099篇
金属工艺   425篇
机械仪表   1668篇
建筑科学   262篇
矿业工程   164篇
能源动力   147篇
轻工业   604篇
水利工程   86篇
石油天然气   862篇
武器工业   168篇
无线电   3721篇
一般工业技术   2087篇
冶金工业   162篇
原子能技术   524篇
自动化技术   1636篇
  2024年   38篇
  2023年   345篇
  2022年   411篇
  2021年   611篇
  2020年   610篇
  2019年   551篇
  2018年   572篇
  2017年   642篇
  2016年   692篇
  2015年   712篇
  2014年   799篇
  2013年   765篇
  2012年   943篇
  2011年   925篇
  2010年   655篇
  2009年   643篇
  2008年   638篇
  2007年   671篇
  2006年   564篇
  2005年   446篇
  2004年   412篇
  2003年   334篇
  2002年   281篇
  2001年   219篇
  2000年   218篇
  1999年   185篇
  1998年   155篇
  1997年   149篇
  1996年   143篇
  1995年   79篇
  1994年   94篇
  1993年   79篇
  1992年   58篇
  1991年   53篇
  1990年   40篇
  1989年   30篇
  1988年   18篇
  1987年   13篇
  1986年   17篇
  1985年   12篇
  1984年   10篇
  1983年   12篇
  1982年   1篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1959年   2篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
PENGFEI ZHANG  SHAOPENG WANG 《Biocell》2021,45(6):1449-1451
The exosome-mediated response can promote or restrain the diseases by regulating the intracellular pathways, making the exosome become an effective marker for diagnosis and therapeutic control at the single-cell level. However, real-time analysis is hard to be achieved with traditional approaches because the exosomes usually need to be enriched by ultracentrifugation for a measurable signal-to-noise ratio. Recently developed label-free single-molecule imaging approaches may become an real-time quantitative tool for the analysis of single exosomes and related secretion behaviors of single living cells owing to their extreme sensitivity.  相似文献   
2.
The construction and examination of meso-structural finite element models of a Chemical-Vapor-Infiltrated (CVI) C/SiC composite is carried out based on X-ray microtomography digital images (IB-FEM). The accurate meso-structural features of the C/SiC composites, which are consisted of carbon fiber tows and CVI-SiC matrix, in particular the cavity defects, are reconstructed. With the IB-FEM, the damage evolution and fracture behaviors of the C/SiC composite are investigated. At the same time, an in situ tensile test is applied to the C/SiC composite under a CT real-time quantitative imaging system, aiming to investigate the damage and failure features of the material as well as to verify the IB-FEM. The IB-FEM results indicate that material damage initially occur at the defects, followed by propagating toward the fiber-tow/SiC-matrix interfaces, ultimately, combined into macro-cracks, which is in good agreement with the in situ CT experiment results.  相似文献   
3.
Fullerenes are candidates for theranostic applications because of their high photodynamic activity and intrinsic multimodal imaging contrast. However, fullerenes suffer from low solubility in aqueous media, poor biocompatibility, cell toxicity, and a tendency to aggregate. C70@lysozyme is introduced herein as a novel bioconjugate that is harmless to a cellular environment, yet is also photoactive and has excellent optical and optoacoustic contrast for tracking cellular uptake and intracellular localization. The formation, water-solubility, photoactivity, and unperturbed structure of C70@lysozyme are confirmed using UV-visible and 2D 1H, 15N NMR spectroscopy. The excellent imaging contrast of C70@lysozyme in optoacoustic and third harmonic generation microscopy is exploited to monitor its uptake in HeLa cells and lysosomal trafficking. Last, the photoactivity of C70@lysozyme and its ability to initiate cell death by means of singlet oxygen (1O2) production upon exposure to low levels of white light irradiation is demonstrated. This study introduces C70@lysozyme and other fullerene-protein conjugates as potential candidates for theranostic applications.  相似文献   
4.
Optical imaging has played a pivotal role in deciphering in vivo bioinformatics but is limited by shallow penetration depth and poor imaging performance owing to interfering tissue autofluorescence induced by concurrent photoexcitation. The emergence of near-infrared (NIR) self-luminescence imaging independent of real-time irradiation has timely addressed these problems. There are two main kinds of self-luminescent agents, namely inorganic and organic luminophores. Inorganic luminophores usually suffer from long-term biotoxicity concerns resulting from potential heavy-metal ions leakage and nonbiodegradability, which hinders their further translational application. In contrast, organic luminophores, especially organic semiconducting luminophores (OSLs) with good biodegradable potential, tunable design, and outstanding optical properties, are preferred in biological applications. This review summarizes the recent progress of OSLs used in NIR afterglow, chemiluminescence, and bioluminescence imaging. Molecular manipulation and nanoengineering approaches of OSLs are discussed, with emphasis on strategies that can extend the emission wavelength from visible to NIR range and amplify luminescence signals. This review concludes with a discussion of current challenges and possible solutions of OSLs in the self-luminescence field.  相似文献   
5.
Radionuclide imaging of HER2 expression in tumours may enable stratification of patients with breast, ovarian, and gastroesophageal cancers for HER2-targeting therapies. A first-generation HER2-binding affibody molecule [99mTc]Tc-ZHER2:V2 demonstrated favorable imaging properties in preclinical studies. Thereafter, the affibody scaffold has been extensively modified, which increased its melting point, improved storage stability, and increased hydrophilicity of the surface. In this study, a second-generation affibody molecule (designated ZHER2:41071) with a new improved scaffold has been prepared and characterized. HER2-binding, biodistribution, and tumour-targeting properties of [99mTc]Tc-labelled ZHER2:41071 were investigated. These properties were compared with properties of the first-generation affibody molecules, [99mTc]Tc-ZHER2:V2 and [99mTc]Tc-ZHER2:2395. [99mTc]Tc-ZHER2:41071 bound specifically to HER2 expressing cells with an affinity of 58 ± 2 pM. The renal uptake for [99mTc]Tc-ZHER2:41071 and [99mTc]Tc-ZHER2:V2 was 25–30 fold lower when compared with [99mTc]Tc-ZHER2:2395. The uptake in tumour and kidney for [99mTc]Tc-ZHER2:41071 and [99mTc]Tc-ZHER2:V2 in SKOV-3 xenografts was similar. In conclusion, an extensive re-engineering of the scaffold did not compromise imaging properties of the affibody molecule labelled with 99mTc using a GGGC chelator. The new probe, [99mTc]Tc-ZHER2:41071 provided the best tumour-to-blood ratio compared to HER2-imaging probes for single photon emission computed tomography (SPECT) described in the literature so far. [99mTc]Tc-ZHER2:41071 is a promising candidate for further clinical translation studies.  相似文献   
6.
中国南海海域部分天然气水合物储层中地层砂为高泥质含量细粉砂,开采防控砂难度较大。针对高泥质细粉砂挡砂机制问题,使用粒度中值为10.13 μm的泥质细粉砂样品,模拟单向气液携砂流动条件,使用绕丝筛板、金属烧结网、金属纤维、预充填陶粒4类挡砂介质在20~80 μm挡砂精度下进行挡砂模拟实验,采用显微成像系统观察挡砂介质内部及表面砂粒沉积与堵塞动态,分析介质流通性能和挡砂性能变化,总结堵塞规律、微观挡砂机制与形态及其控制因素。研究结果表明,不同类型和精度的挡砂介质对泥质细粉砂的堵塞总体呈现堵塞开始、堵塞加剧和堵塞平衡3个阶段。随着驱替进行,挡砂介质渗透率逐渐降低,幅度会高达90%以上;同时过砂速度减缓,最终过砂率为5%~10%。根据堵塞规律和微观图像分析,提出了粗组分分选桥架、局部砂团适度挡砂、整体砂桥阻挡等挡砂介质对泥质细粉砂的3种微观挡砂机制。以粗组分分选桥架挡砂机制为主的挡砂工况下,挡砂介质堵塞渗透率较高,但过砂率超过15%,挡砂效果较差;以整体砂桥挡砂机制为主时,过砂率在10%以下,挡砂性能较好,但各类挡砂介质的堵塞渗透率不足1 D,流通性能较差。局部砂团适度挡砂机制为主时介质挡砂性能及流通性能介于两者之间。挡砂介质对天然气水合物储层泥质细粉砂的微观挡砂机制和形态受挡砂介质类型、精度、地层砂特征以及流动条件等因素控制,其规律对于水合物泥质细粉砂防控砂优化有指导意义。  相似文献   
7.
Illumination is essential for modern life as colorful world is perceived by human visionary system. Display technology has been developing rapidly in recent decades, and the basic principle is related to the way that the image is illuminated and light is emanated. Traditional illumination is provided by different types of light sources, and the display image is visible in large viewing space until the emanating light decays to zero. This work proposes and demonstrates a novel illumination scheme for a display in which the displaying images are visible only in specific spatial regions. The directional backlight ensures the image propagating to specific direction while imaging visibility can be controlled to terminate abruptly at certain distance from the display screen while exerting no influence to nearby regions. The working principle for such an illumination scheme is the use of the modulated coherent directional backlight through an axicon lens. It is shown that the illumination scheme can robustly deliver carried image information to the designated viewing region. This new illumination scheme has many advantages over conventional illumination, including its usage for personal display, very lower energy consumption, as well as minimizing light hazard pollution.  相似文献   
8.
The detection of retinal microaneurysms is crucial for the early detection of important diseases such as diabetic retinopathy. However, the detection of these lesions in retinography, the most widely available retinal imaging modality, remains a very challenging task. This is mainly due to the tiny size and low contrast of the microaneurysms in the images. Consequently, the automated detection of microaneurysms usually relies on extensive ad-hoc processing. In this regard, although microaneurysms can be more easily detected using fluorescein angiography, this alternative imaging modality is invasive and not adequate for regular preventive screening.In this work, we propose a novel deep learning methodology that takes advantage of unlabeled multimodal image pairs for improving the detection of microaneurysms in retinography. In particular, we propose a novel adversarial multimodal pre-training consisting in the prediction of fluorescein angiography from retinography using generative adversarial networks. This pre-training allows learning about the retina and the microaneurysms without any manually annotated data. Additionally, we also propose to approach the microaneurysms detection as a heatmap regression, which allows an efficient detection and precise localization of multiple microaneurysms. To validate and analyze the proposed methodology, we perform an exhaustive experimentation on different public datasets. Additionally, we provide relevant comparisons against different state-of-the-art approaches. The results show a satisfactory performance of the proposal, achieving an Average Precision of 64.90%, 31.36%, and 33.55% in the E-Ophtha, ROC, and DDR public datasets. Overall, the proposed approach outperforms existing deep learning alternatives while providing a more straightforward detection method that can be effectively applied to raw unprocessed retinal images.  相似文献   
9.
The anatomical variations of two plants from the Nyctaginaceae family, Bougainvillea spectabilis and Bougainvillea glabra, were studied using light and scanning electron microscopy methods in this work. Bougainvillea is a dicotyledonous with defensive traits that can withstand extreme (hot and dry) settings; according to the findings, crystal inclusions in cells, woody spines, and an abnormal development pattern are all features that help them survive against predators and are unique to this species. The Bougainvillea plant's leaves are arranged in simple pattern, alternate to each other along stem having an undulate leaves edge and an oval form. The xylem and phloem, palisade, parenchyma midrib, spongy mesophyll, raphide crystal bundles, and trichomes were all visible when bracts and leaves were transversally sectioned and dyed with toluidine blue O (TBO). The presence of crystals was confirmed by a detailed examination of the transverse leaves by using bright-field and cross-polarizing microscopy. Dissecting microscopic examination showed that all the leaves revealed leaves venation pattern that had midvein, lateral veins areoles, and trichomes. Although trichomes have been identified on both sides, a closer look at a cleaned leaf dyed with TBO showed multicellular abundant trichomes on adaxial surface. Stomata complexes were typically found on the abaxial surface of the leaf according to epidermal peels. Present studies also showed that on adaxial side, stomata were lesser in number or were absent and also showed that the morphologies of the pavement cells on the adaxial and abaxial sides of the leaf differed.  相似文献   
10.
针对高帧频、全局曝光和光谱平坦等成像应用需求,设计了一款高光谱成像用CMOS图像传感器。其光敏元采用PN型光电二极管,读出电路采用5T像素结构。采用列读出电路以及高速多通道模拟信号并行读出的设计方案来获得低像素固定图像噪声(FPN)和非均匀性抑制。芯片采用ASMC 0.35μm三层金属两层多晶硅标准CMOS工艺流片,为了抑制光电二极管的光谱干涉效应,后续进行了光谱平坦化VAE特殊工艺,并对器件的光电性能进行了测试评估。电路测试结果符合理论设计预期,成像效果良好,像素具备积分可调和全局快门功能,最终实现的像素规模为512×256,像元尺寸为30μm×30μm,最大满阱电子为400 ke^(-),FPN小于0.2%,动态范围为72 dB,帧频为450 f/s,相邻10 nm波段范围内量子效率相差小于10%,可满足高光谱成像系统对CMOS成像器件的要求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号