首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1813篇
  免费   229篇
  国内免费   216篇
电工技术   77篇
综合类   118篇
化学工业   268篇
金属工艺   243篇
机械仪表   151篇
建筑科学   60篇
矿业工程   25篇
能源动力   43篇
轻工业   59篇
水利工程   10篇
石油天然气   53篇
武器工业   27篇
无线电   422篇
一般工业技术   421篇
冶金工业   42篇
原子能技术   14篇
自动化技术   225篇
  2024年   1篇
  2023年   47篇
  2022年   55篇
  2021年   70篇
  2020年   72篇
  2019年   60篇
  2018年   66篇
  2017年   86篇
  2016年   73篇
  2015年   63篇
  2014年   86篇
  2013年   121篇
  2012年   122篇
  2011年   127篇
  2010年   77篇
  2009年   98篇
  2008年   123篇
  2007年   132篇
  2006年   92篇
  2005年   106篇
  2004年   85篇
  2003年   66篇
  2002年   40篇
  2001年   64篇
  2000年   58篇
  1999年   43篇
  1998年   55篇
  1997年   38篇
  1996年   31篇
  1995年   16篇
  1994年   27篇
  1993年   17篇
  1992年   8篇
  1991年   6篇
  1990年   12篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1975年   1篇
排序方式: 共有2258条查询结果,搜索用时 93 毫秒
1.
三维异质异构集成技术是实现电子信息系统向着微型化、高效能、高整合、低功耗及低成本方向发展的最重要方法,也是决定信息化平台中微电子和微纳系统领域未来发展的一项核心高技术。文章详细介绍了毫米波频段三维异质异构集成技术的优势、近年来的发展趋势以及面临的挑战。利用硅基MEMS 光敏复合薄膜多层布线工艺可实现异质芯片的低损耗互连,同时三维集成高性能封装滤波器、高辐射效率封装天线等无源元件,还能很好地处理布线间的电磁兼容和芯片间的屏蔽问题。最后介绍了一款新型毫米波三维异质异构集成雷达及其在远距离生命体征探测方面的应用。  相似文献   
2.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
3.
《Ceramics International》2022,48(3):3536-3543
We investigated the optical and electrical properties of Ta2O5/Ag/Ta2O5 films as functions of the thicknesses of the Ta2O5 and Ag layers. It was found that with an increase in the thicknesses of the Ta2O5 and Ag layers from 10 to 40 nm and from 12 to 24 nm, respectively, the sheet resistance, carrier concentration, electron mobility, and resistivity of the Ta2O5/Ag/Ta2O5 film varied from 2.02 to 8.95 Ω/sq, 5.74 × 1021 to 2.92 × 1022 cm–3, from 13.21 to 24.07 cm2/V·s, and from 8.89 × 10-6 to 8.24 × 10-5 Ω cm, respectively. The average transmittance (Tav) of the multilayer samples ranged from 57.18% to 93.99%, and it depended on the Ta2O5 and Ag layer thicknesses. The highest Tav of 93.99% was observed for the film with 35 nm thick Ta2O5 and 18 nm thick Ag layers, and the peak Haacke's figure of merit (157.04 × 10–3 Ω–1) was obtained for 20 nm thick Ta2O5 and 21 nm thick Ag layers. Ta2O5 (100 nm) and Ta2O5/Ag/Ta2O5 (20 nm/21 nm/20 nm) samples had optical bandgaps of 4.70 and 4.45 eV, respectively. Film Wizard simulations were conducted to understand the dependence of the transmittance of the multilayer on the thicknesses of the Ta2O5 and Ag layers, and phasor analyses were performed to determine how the transmittance of the Ta2O5/Ag/Ta2O5 (20 nm/21 nm/20 nm) film depended on the Ta2O5 layer's thickness.  相似文献   
4.
Epoxy composite coatings filled with fillers have been used extensively as anticorrosion materials. In this study, an alternating multilayer structure is designed to obtain multifunctional epoxy resin composite coating based on stepwise coating method via adding graphene and α‐alumina. Their mechanical properties, thermal conductivity, dielectric and anticorrosion properties are characterized. The toughness and the thermal conductivity clearly increase, while the dielectric properties decrease approximately to zero when the filler mass fraction increases from 0.00% to 0.15%. The whole corrosion process is controlled by electrochemical reaction, and the fillers effectively block the corrosive medium, thus improving the anticorrosion performance of the composite coating.  相似文献   
5.
通过对电阻层析成像数据采集原理和深度学习网络的研究,提出了一种基于阵列电阻值和多层感知器深度学习网络相结合的流型识别方法。利用电阻层析成像系统中的16个电极传感器来获取流型样本数据,并构建出流型识别数据库,然后对多层感知器深度学习网络进行训练,获得可以识别不同流型的网络。实验结果表明,采用阵列电阻值结合多层感知器网络对流型进行学习和识别的方法,流型识别准确率可以达到95%,解决了流型图像生成过程与数据特征预选过程中流型特征损失的问题,流型识别性能得到了提高。  相似文献   
6.
Biologically structured carbon/cerium dioxide materials are synthesized by biological templates. The microscopic morphology, structure and the effects of different oxidation temperatures on materials are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) ultraviolet-visible light spectrum (UV–Vis) and X-ray Photoelectron Spectroscopy (XPS). Moreover, by splitting water under visible light irradiation, the hydrogen production is measured to test the photocatalytic property of these materials. The results show that materials made with bamboo biological templates which are immersed in 0.1 mol L?1 of cerium nitrate solution, then carbonizated in nitrogen (700 °C) and oxidized in air (500–600 °C), can obtain the biological structure of bamboo leaves. The product is in the composition of hybrid multilayer membrane, which one is carbon membrane form plant cell carbonation and another is ceria membrane by nanoparticle self assembly. The best oxidation temperature is 550 °C and the band gap of carbon/cerium dioxide materials synthesized at this optimum oxidation temperature could be reduced to 2.75 eV. After exposure to visible light for 6 h, the optimal hydrogen production is about 302 μmol g?1, which is much higher than that of pure CeO2.  相似文献   
7.
This paper deals with the identification of the thermal parameters of multilayer objects using the concept of thermal impedance. In order to perform such identification, temperature evolution in time is obtained by an infrared camera after power excitation is applied in the investigated structure. Infrared thermography offers the advantage of being a noncontact temperature detection and measurement method. In many practical cases, it is impossible to use contact temperature measurements. Typically, the power in the form of a step function is applied. In order to calculate the thermal impedance of an object, temperature and power are converted into the frequency domain using the Laplace transform for s = jω. Then, the poles of the thermal impedance are identified using vector fitting, which allows calculating the thermal impedance as a sum of partial fractions. This corresponds directly to the Foster network of a thermal object. In addition, the vector fitting method offers much better convergence in comparison with other methods using the polynomial rational approximation of thermal impedance. A considerable improvement of the numerical Laplace transform in high frequency range is proposed. In this approach, the variable s = is replaced by , and then, the integration result is corrected by the Taylor series. It leads to a kind of filtering of the temperature signal.  相似文献   
8.
This paper deals with adaptive nonlinear identification and trajectory tracking problem via dynamic multilayer neural network with different time scales. By means of a Lyapunov‐like analysis, we determine stability conditions for the on‐line identification. Then, a sliding mode controller is designed for trajectory tracking with consideration of the modeling error and disturbance. The main contributions of the paper lie in the following aspects. First, we extend our prior identification results of single‐layer dynamic neural networks with multi‐time scales to those of multilayer case. Second, the e‐modification in standard use in adaptive control is introduced in the on‐line update laws to guarantee bounded weights and bounded identification errors. Third, the potential singularity problem in controller design is solved by using new update laws for the NN weights so that the control signal is guaranteed bounded. The stability of proposed controller is proved by using Lyapunov function. Simulation results demonstrate the effectiveness of the proposed algorithm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
In this study, we have proposed an artificial neural network (ANN) model to estimate and forecast the number of confirmed and recovered cases of COVID-19 in the upcoming days until September 17, 2020. The proposed model is based on the existing data (training data) published in the Saudi Arabia Coronavirus disease (COVID-19) situation—Demographics. The Prey-Predator algorithm is employed for the training. Multilayer perceptron neural network (MLPNN) is used in this study. To improve the performance of MLPNN, we determined the parameters of MLPNN using the prey-predator algorithm (PPA). The proposed model is called the MLPNN–PPA. The performance of the proposed model has been analyzed by the root mean squared error (RMSE) function, and correlation coefficient (R). Furthermore, we tested the proposed model using other existing data recorded in Saudi Arabia (testing data). It is demonstrated that the MLPNN-PPA model has the highest performance in predicting the number of infected and recovering in Saudi Arabia. The results reveal that the number of infected persons will increase in the coming days and become a minimum of 9789. The number of recoveries will be 2000 to 4000 per day.  相似文献   
10.
MnO2 and Nb2O5 co-doped 0.9BaTiO3-0.1(Bi0.5Na0.5)TiO3 powders with excellent dielectric properties were fabricated using a conventional solid-state reaction method and sand milling. The doping effects of various amounts of MnO2 on the dielectric properties were investigated. The results revealed that the dielectric properties greatly depended on the concentration of MnO2. All the ceramics met the X9R specification. The dielectric loss decreased with an increasing concentration of MnO2. The specimen with an appropriate amount of 0.2 mol% MnO2 exhibited the most enhanced properties: high insulation resistance (2.49 × 1013 Ω/cm) and improved degradation properties. Multilayer ceramic capacitor (MLCC) chips were prepared by tape casting using a 0.2 mol% Mn-doped 9010BTBNT-based ceramic powder. The capacitance of the MLCC chip was approximately 100 nF, and the dielectric loss was approximately 1.75% at room temperature. The high-temperature accelerated lifetime was over 1000 hours under 250 V (five times the working voltage) and at 230°C, indicating that the MLCC chips possess superior reliability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号