首页 | 本学科首页   官方微博 | 高级检索  
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  完全免费   3篇
  无线电   19篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   6篇
  2011年   3篇
排序方式: 共有19条查询结果,搜索用时 170 毫秒
In this paper the problem of optimization of the measurement matrix in compressive (also called compressed) sensing framework is addressed. In compressed sensing a measurement matrix that has a small coherence with the sparsifying dictionary (or basis) is of interest. Random measurement matrices have been used so far since they present small coherence with almost any sparsifying dictionary. However, it has been recently shown that optimizing the measurement matrix toward decreasing the coherence is possible and can improve the performance. Based on this conclusion, we propose here an alternating minimization approach for this purpose which is a variant of Grassmannian frame design modified by a gradient-based technique. The objective is to optimize an initially random measurement matrix to a matrix which presents a smaller coherence than the initial one. We established several experiments to measure the performance of the proposed method and compare it with those of the existing approaches. The results are encouraging and indicate improved reconstruction quality, when utilizing the proposed method.  相似文献
基于多尺度特征表示的城市道路检测   总被引:1,自引:0,他引:1  
基于图像的车辆周边场景分析是近来车辆主动安全的热门研究方向,但对于复杂路况的道路识别目前依然是一个难题。该文提出一种适用于城市复杂道路场景的单目视觉路面识别算法。该方法结合多尺度的稀疏编码,在大尺度上利用道路的局部纹理信息,在较小尺度,特别是中等尺度上利用空间上下文信息,对车辆的可行驶区域进行识别。实验表明,该方法提高了道路与周边环境中相似纹理的区分能力;在铺设良好的结构化道路,或者车道线、路界缺失,光照复杂的道路场景中,该方法都取得了较好的检测结果。  相似文献
基于压缩转发的协作MIMO雷达成像算法   总被引:1,自引:1,他引:0  
以实现地面目标的快速、高分辨率成像为目的,本文提出了一种基于压缩感知和协作通信技术的解决方案.在分析压缩感知理论和传统协作MIMO雷达成像算法的基础上,提出了基于匹配滤波器的协作MIMO雷达回波信号的稀疏表示方法和用于恢复重构的基函数,并建立了基于压缩转发的协作MIMO雷达系统模型.该系统主要由收发雷达、转发节点和压缩感知成像处理中心组成,转发节点利用模拟/信息转换(AIC)测量框架将雷达回波数据压缩后转发,压缩感知成像处理中心接收到各转发节点转发的数据后,利用正交匹配追踪算法(0MP)进行距离向压缩和方位向压缩,从而实现快速、高分辨率成像.仿真结果表明,该方法比传统MIMO雷达对各转发节点的传输负荷要求低,成像速度快,目标旁瓣低,成像效果好.  相似文献
基于改进正交匹配追踪算法的压缩感知雷达成像方法   总被引:1,自引:0,他引:1  
运算复杂度高是基于压缩感知(CS)的雷达成像方法走向实用亟待克服的难题。该文利用雷达目标散射率分布的稀疏性,研究了基于改进正交匹配追踪(OMP)算法的2维联合压缩成像方法。首先建立了步进频雷达回波的稀疏表示模型,根据稀疏字典和压缩测量的2维可分离特性,提出一种改进的OMP算法用于雷达图像形成,大大提高了计算效率,并很容易扩展到其他贪婪类算法中。从理论上对几种CS成像算法的性能及资源需求进行了分析比较,表明所提供的算法相比常规的CS算法在存储量和计算量上均具有显著的优势,仿真及暗室数据实验验证了所提成像算法的有效性。  相似文献
基于贝叶斯检验模型的压缩感知算法及应用   总被引:1,自引:1,他引:0  
针对正交匹配追踪(OMP)算法需设置冗余的支撑集,导致信号重构时运算量变大、抗噪性能和重构性能变差等问题,提出了一种基于贝叶斯模型的OMP(BOMP,bayesian orthogonal matching pursuit)算法。首先利用贝叶斯检验模型和OMP算法合理去除支撑集中的冗余部分,得到相等或略大于信号真实稀疏度的支撑集;其次构建BOMP的信号重构算法;最后将算法应用于ISAR成像。仿真和实测数据结果表明,由于本文算法可近似估计到信号的真实稀疏度,因此具有更好的抗噪性能以及重构精度,相应的运算量也明显减少。  相似文献
考虑到投影矩阵对压缩感知(CS)算法性能的影响,该文提出一种优化投影矩阵的算法。该方法提出可导的阈值函数,通过收缩 Gram 矩阵非对角元的方法压缩投影矩阵和稀疏字典的相关系数,引入基于沃尔夫条件(Wolfe’s conditions)的梯度下降法求解最佳投影矩阵,达到提高投影矩阵优化算法稳定度和重构信号精度的目的。通过基追踪(BP)算法和正交匹配追踪(OMP)算法求解l0优化问题,用压缩感知方法实现随机稀疏向量、小波测试信号和图像信号的感知和重构。仿真实验表明,该文提出的投影矩阵优化算法能较大地提高重构信号的精度。  相似文献
The paper proposes a new method of multi-band signal reconstruction based on Orthogonal Matching Pursuit (OMP), which aims to develop a robust Ecological Sounds Recognition (ESR) system Firstly, the OMP is employed to sparsely decompose the original signal, thus the high correlation components are retained to reconstruct in the first stage. Then, according to the frequency distribution of both foreground sound and background noise, the signal can be compensated by the residual components in the second stage. Via the two-stage reconstruction, high non-stationary noises are ef- fectively reduced, and the reconstruction precision of foreground sound is improved. At recognition stage, we employ deep belief networks to model the composite feature sets extracted from reconstructed signal. The experimental results show that the proposed approach achieved superior recognition per- formance on 60 classes of ecological sounds in different environments under different Signal-to-Noise Ratio (SNR), compared with the existing method.  相似文献
已有的研究表明基于模型的压缩采样信号重建可以取得更好的重建效果。本文提出一种结合小波域马尔可夫树模型的压缩采样图像重建方法。马尔可夫树模型很好的匹配了图像小波变换后的系数在尺度间的持续性。这种统计特性可以在正交匹配追踪算法中协助原子的选取,从而更准确的选取具有大幅值系数的原子。在本文提出的新算法中,每次迭代新增的原子是从与残差信号较匹配的候选原子中选取。候选原子中使模型的状态似然函数最大的原子被选出。实验结果表明,新算法可以更准确选出具有大系数原子,重建的图像质量好于其它传统方法。  相似文献
An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing.  相似文献
在压缩感知研究中,信号在不同变换下的稀疏域好坏是影响信号重构性能的重要因素。该文基于语音信号的线性预测分析(LPC),提出一种结合了LPC分析和差分变换的语音稀疏化联合变换方法,通过正交匹配追踪算法(OMP)优化算法重构语音信号,与FFT和LPC两种稀疏化方法进行了对比分析。实验表明,在压缩比大于0.4时,联合变换法重构的语音信号性能明显优于另外两种方法。也即在相同重构性能并兼顾语音质量的情况下,联合变换法具有较小的压缩比,因而具有较好的压缩性能。采用PESQ语音质量评测方法对3种稀疏化算法重构的语音进行平均意见值(MOS)对比,联合变换法也具有较好的性能。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号