首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46717篇
  免费   6119篇
  国内免费   3167篇
电工技术   4343篇
技术理论   3篇
综合类   3559篇
化学工业   11479篇
金属工艺   4887篇
机械仪表   1856篇
建筑科学   1367篇
矿业工程   703篇
能源动力   1730篇
轻工业   2833篇
水利工程   456篇
石油天然气   1848篇
武器工业   443篇
无线电   7241篇
一般工业技术   7105篇
冶金工业   2410篇
原子能技术   556篇
自动化技术   3184篇
  2024年   64篇
  2023年   965篇
  2022年   1261篇
  2021年   1747篇
  2020年   1805篇
  2019年   1735篇
  2018年   1554篇
  2017年   1798篇
  2016年   1705篇
  2015年   1770篇
  2014年   2465篇
  2013年   2904篇
  2012年   3099篇
  2011年   3175篇
  2010年   2283篇
  2009年   2569篇
  2008年   2402篇
  2007年   2931篇
  2006年   2751篇
  2005年   2282篇
  2004年   1950篇
  2003年   1949篇
  2002年   1624篇
  2001年   1426篇
  2000年   1239篇
  1999年   970篇
  1998年   858篇
  1997年   785篇
  1996年   665篇
  1995年   617篇
  1994年   535篇
  1993年   385篇
  1992年   360篇
  1991年   284篇
  1990年   261篇
  1989年   226篇
  1988年   121篇
  1987年   76篇
  1986年   59篇
  1985年   67篇
  1984年   63篇
  1983年   50篇
  1982年   56篇
  1981年   30篇
  1980年   26篇
  1979年   7篇
  1977年   7篇
  1975年   7篇
  1959年   6篇
  1951年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
A double pyrovanadate CaMgV2O7 sample was synthesized via a facile solid-state route under an air atmosphere. The nonequilibrium formation pathways of the CaMgV2O7 were investigated via powder X-ray diffraction. A multistep reactions path (metavanadates–pyrovanadates–double pyrovanadate CaMgV2O7) was proposed to describe the formation of the CaMgV2O7 considering the thermodynamic and kinetic factors. The cell unit parameters of the CaMgV2O7 sample indicated the crystallization according to a monoclinic system with space group P12/c1(14), and the lattice parameters of a = 6.756 Å, b = 14.495 Å, c = 11.253 Å, β = 99.12, and V = 108.806 Å3. X-ray photoelectron spectroscopy also confirmed the +5 oxidation state vanadium in CaMgV2O7. The endothermic effects at 1033 and 1143 K were related to the incongruent melting and liquidus temperatures of CaMgV2O7, respectively. The comprehensive thermodynamic properties of CaMgV2O7 were established in both low- and high-temperature regions, utilizing a physical property measurement system and multi-high-temperature calorimetry (96 lines). The heat capacity (200 J mol K−1) and entropy (198 J mol K−1) at 298.15 K were computed based on the low-temperature heat capacity values, and the enthalpy of formation at 298.15 K was also estimated. The fitted high-temperature capacity can be used to obtain the changes in the enthalpy, entropy, and Gibbs free energy. This study is part of building a reliable thermodynamic database of the CaO–MgO–V2O5 system.  相似文献   
2.
《Ceramics International》2022,48(11):14987-14992
The ceramic compound CaMoO4 is synthesized via a solid-state reaction technique. Rietveld refinement studies were done on the powder X-ray diffraction data of CaMoO4 and revealed that the compound is crystallized in the tetragonal Scheelite structure with I41/a space group. The differential scanning calorimetry (DSC) studies on CaMoO4 divulged an anomaly around 440 °C. This anomaly is further probed using the temperature-dependent Raman and dielectric spectroscopic measurements and are corroborating with the results obtained from DSC. A detailed investigation on the temperature-dependent Raman spectroscopic data revealed that the A1g mode of CaMoO4 showed a soft phonon behavior up to the phase transition temperature. It is observed that the A1g mode displayed phonon hardening behavior with further increasing the temperature. The anomaly is attributed to an isostructural phase transition (IPT), a rarely observed phenomenon in the compounds with Scheelite structure. The IPT in CaMoO4 is elucidated with a phonon softening mechanism.  相似文献   
3.
In the present work it is found that the pyrotechnic composition VS-2 can be initiated with flash lamps IFC-500 and EVIS. VS-2 pyrotechnic composition contains 90% of mercury(Ⅱ) 5-hydrazinotetrazolate perchlorate and 10% of optically transparent copolymer of 2-methyl-5-vinyltetrazole and methacrylic acid (PVMT). We have found that the flash lamps make it possible to initiate combustion of VS-2 composition with its transition to detonation both in cylindrical charges placed in brass caps of 5 mm diameter and 2 mm high, and film charges with 10 mm×80 mm in size and surface weights of 60 mg·cm-2 and 90 mg·cm-2, showing ignition delay times 10 μs and 3 μs, respectively. We also measured detonation velocities for VS-2 composition film charges, which were 4375-4505 m·s-1 (of the charge being surface mass 60 mg·cm-2) and 4221-4281 m·s-1 (of the charge being surface mass 90 mg·cm-2) and their blasting action on the aluminum plate. The depths of the normal shock wave imprints at the charge-barrier interface were 0.6-0.7 mm (for surface mass of the film charges 60 mg·cm-2) and 1.2-1.3 mm (for surface mass of the film charges 90 mg·cm-2).  相似文献   
4.
5G蜂窝网络发展迅猛,其覆盖面积将逐渐增大,因此使用5G蜂窝网络进行定位是有研究潜力的研究方向。本文提出一种新的深度学习技术来实现高效、高精度和低占用的定位,以代替传统指纹定位过程中繁重的指纹库生成以及距离计算。该方法建立了一个特殊的卷积神经网络,并根据5G天线信号的接收信号强度指示、相位和到达角等特征量,选择合适的输入数据格式构造样本组建训练集,对该卷积神经网络进行训练。训练得到的卷积神经网络可以替代指纹定位中的庞大指纹库,非常有利于直接在5G移动设备端实现定位。虽然卷积神经网络在训练过程中需要大量时间,但在训练完毕后直接进行分类定位的速度非常快,可以保障定位实现的实时性。本文所实现的卷积神经网络权重与偏置所占内存不到0.5 MB,且能够在实际应用环境中以95%的定位准确率以及0.1 m的平均定位精度实现高精度定位。  相似文献   
5.
《Ceramics International》2022,48(21):31995-32000
Among the existing material family of the correlated oxides, the rare earth nickelates (ReNiO3) exhibit broadly adjustable metal to insulator transition (MIT) properties that enables correlated electronic applications, such as thermistors, thermochromics, and logical devices. Nevertheless, how to accurately control the critical temperature (TMIT) of ReNiO3 via the co-occupation of the rare-earth elements is yet worthy to be further explored. Herein, we demonstrate the non-linearity in adjusting the TMIT of ReNiO3 towards lower temperatures via introducing Pr co-occupation within ReNiO3 (e.g., PrxNd1-xNiO3 and PrxSm1-xNiO3) as synthesized by KCl molten-salt assisted high oxygen pressure reaction approach. Although the TMIT is effectively reduced via Pr substitution, it does not strictly follow a linear relationship, in particular, when there is large difference in the ionic radius of the co-occupation rare-earth elements. Furthermore, the most significant deviation in TMIT from the expected linear relationship appears at an equal co-occupation ratio of the two different rare-earth elements, while the abruption in the variation of resistivity across TMIT is also reduced. The present work highlights the importance to use adjacent rare-earth elements with co-occupation ratio away from 1:1 for achieving more linear adjustment in designing the metal to insulator transition properties for ReNiO3.  相似文献   
6.
We investigate synthesis, phase evolution, hollow and porous structure and magnetic properties of quasi-amorphous intermediate phase (QUAIPH) and hematite (α-Fe2O3) nanostructure synthesized by annealing of akaganeite (β-FeOOH) nanorods. It is found that the annealing temperature determines the phase composition of the products, the crystal structure/size dictates the magnetic properties whereas the final nanorod morphology is determined by the starting material. Annealing of β-FeOOH at ~300 °C resulted in the formation of hollow QUAIPH nanorods. The synthesized material shows low-cytotoxicity, superparamagnetism and good transverse relaxivity, which is rarely reported for QUAIPH. The QUAIPH nanorods started to transform to porous hematite nanostructures at ~350 °C and phase transformation was completed at 600 °C. During the annealing, the crystal structure changed from monoclinic (akaganeite) to quasi-amorphous and rhombohedral (hematite). Unusually, the crystallite size first decreased (akaganeite → QUAIPH) and then increased (QUAIPH → hematite) during annealing whereas the nanorods retained particle shape. The magnetic properties of the samples changed from antiferromagnetic (akaganeite) to superparamagnetic with blocking temperature TB = 84 K (QUAIPH) and finally to weak-ferromagnetic with the Morin transition at TM = 244 K and high coercivity HC = 1652 Oe (hematite). The low-cytotoxicity and MRI relaxivity (r2 = 5.80 mM?1 s?1 (akaganeite), r2 = 4.31 mM?1 s?1 (QUAIPH) and r2 = 5.17 mM?1 s?1 (hematite)) reveal potential for biomedical applications.  相似文献   
7.
Heat transfer within ceramic feedstock powders is still unclear, which impedes optimization of the thermal and mechanical properties of the thermal sprayed coatings. The microspheres (yttria-stabilized zirconia YSZ and lanthanum zirconate LZO) were prepared via the electro-spraying assisted phase inversion method (ESP). The thermal properties of the two ESP microspheres and a commercial hollow spherical powder (HOSP) were investigated by using theoretical, experimental, and simulation methods. Thermal conductivity of the single microsphere was estimated via a novel nest model that was derived from the Maxwell-Eucken 1 and the EMT model. Thermal conductivity of a single YSZ/LZO-ESP microsphere prepared at 1100–1200 °C was within 0.36–0.75 W/m K, which was ~ 20 % lower than that of a single YSZ-HOSP microsphere with a similar porosity. Heat flux simulation showed that high tortuosity around the multi-scaled voids of the ESP microsphere led to a more efficient decrease in thermal conductivity compared with total porosity.  相似文献   
8.
The table-like magnetocaloric effect is significant for the magnetic refrigeration applications above 20 K based on the Ericsson cycle. Herein, we prepared a series of Nd6Fe13Pd1–xCux (x = 0.05, 0.1, 0.15) compounds by the arc-melting method. These compounds show the single crystalline phase in the tetragonal Nd6Fe13Si-type structure with the space group I4/mcm. A magnetic phase transition from ferromagnetism to antiferromagnetism and a metamagnetic transition from the antiferromagnetic state to the ferromagnetic state are observed in each of the compounds. The compounds exhibit table-like magnetocaloric effects with large refrigerant capacities. A constant ΔSM in a temperature span of 40 K in the Nd6Fe13Pd0.85Cu0.15 compound are observed. For a field change of 0–5 T, the peak values of –ΔSM for the Nd6Fe13Pd0.95Cu0.05, Nd6Fe13Pd0.90Cu0.10, and Nd6Fe13Pd0.85Cu0.15 compounds are estimated to be 4.8, 4.6 and 4.4 J/(kg·K) with corresponding refrigerant capacity values of 323, 331 and 316 J/kg, respectively. The obtained table-like magnetocaloric effects with large refrigerant capacities as well as fairly small thermal and magnetic hysteresis deem these series of compounds good candidates for single-phase magnetic refrigeration based on the Ericsson cycle.  相似文献   
9.
Revealing the active species of the catalyst is conducive to the design of more efficient catalyst. Herein, we tried to demonstrate the roles of amorphous and crystalline structures on CePO4 catalyst during selective catalytic reduction (SCR) of NOx by NH3. Higher calcination temperature promotes the transfer of amorphous structure to crystalline structure on the surface of CePO4. Both amorphous and crystalline CePO4 species on CePO-X samples can provide acid sites for NH3 adsorption, but the former can provide more acid sites. The superior redox property of surface amorphous CePO4 species contributes to its high NH3-SCR activity at low temperature, but it also leads to the decrease of high temperature (>350 °C) NH3-SCR activity due to the oxidation of NH3. In contrast, crystalline CePO4 species shows high activity only at high temperature because of its poor redox property. Therefore, it can be inferred that amorphous and crystalline structures on CePO4 catalyst can be the efficient active species of NH3-SCR at low and high temperature, respectively.  相似文献   
10.
In this study, the Bayan Obo rare earth concentrates mixed with Na2CO3 were used for roasting research. The phase change process of each firing stage was analyzed. The kinetic mechanism model of the continuous heating process was calculated. This study aims to recover valuable elements and optimize the production process to provide a certain theoretical basis. Using X-ray diffraction (XRD), Fourier infrared spectroscopy, scanning electron microscopy with energy dispersive spectrometry, the reaction process and the existence of mineral phases were analyzed. The variable temperature XRD and thermogravimetric method were used to calculate the roasting kinetics. The phase transition results show that carbonate-like substances first decompose into fine mineral particles, and CaO, MgO, and SiO2 react to form silicates, causing hardening. Further, REPO4 and NaF can directly generate CeF3 and CeF4 at high temperatures, and a part of CeF4 and NaF forms a solid solution substance Na3CeF7. Rare earth oxides calcined at a high temperature of 750 °C were separated to produce Ce0.6Nd0.4O1.8, Ce4O7, and LaPrO3+x. Then, BaSO4, Na2CO3, and Fe2O3 react to form barium ferrite BaFe12O19; the kinetic calculation results show that during the continuous heating process, the apparent activation energy E reaches the minimum in the entire reaction stage in the temperature range of 440–524 °C, and the reaction order n reaches the maximum, which indicates that the decomposition product REFO significantly impacts the reaction system and reduces the activation energy. The mechanism function is F(α) = [?ln (1?α)]1/3. The reaction order n reaches the minimum in the temperature range of 680–757 °C, and the apparent activation energy E is large. The difficulty of the reaction increases during the final stage. The reaction mechanism function is F(α) = [1?(1?α)1/3]2. Observing the entire reaction stage, the step of controlling the reaction rate changes from random nucleation to three-dimensional diffusion (spherical symmetry).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号