首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19322篇
  免费   2490篇
  国内免费   1176篇
电工技术   7570篇
综合类   1277篇
化学工业   1270篇
金属工艺   1043篇
机械仪表   943篇
建筑科学   259篇
矿业工程   353篇
能源动力   657篇
轻工业   141篇
水利工程   77篇
石油天然气   228篇
武器工业   90篇
无线电   4653篇
一般工业技术   943篇
冶金工业   1998篇
原子能技术   123篇
自动化技术   1363篇
  2024年   41篇
  2023年   317篇
  2022年   487篇
  2021年   602篇
  2020年   704篇
  2019年   595篇
  2018年   493篇
  2017年   758篇
  2016年   847篇
  2015年   903篇
  2014年   1289篇
  2013年   1098篇
  2012年   1533篇
  2011年   1620篇
  2010年   1208篇
  2009年   1137篇
  2008年   1214篇
  2007年   1374篇
  2006年   1306篇
  2005年   1034篇
  2004年   838篇
  2003年   689篇
  2002年   533篇
  2001年   469篇
  2000年   447篇
  1999年   331篇
  1998年   247篇
  1997年   202篇
  1996年   152篇
  1995年   130篇
  1994年   105篇
  1993年   65篇
  1992年   62篇
  1991年   37篇
  1990年   30篇
  1989年   19篇
  1988年   21篇
  1987年   14篇
  1986年   10篇
  1985年   7篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 166 毫秒
1.
High-temperature water electrolysis through solid oxide electrolysis cells (SOEC) will play a key role in building a hydrogen economy in the future. However, the delamination between the air electrode and the electrolyte remains a critical issue to be addressed. Previously, it was hypothesized that Co migration may improve the catalytic activity of the SrZrO3 second phase at the LSCF-YSZ interface, eventually leading to the delamination. In this work, the LSCF-YSZ interfaces sintered at different temperatures were examined in detail. The activation behaviors of the LSCF electrodes upon application with electrolysis current were characterized under different conditions. Further, samples containing purposely added SrZrO3 interlayer with and without cobalt were fabricated and compared. The activation process is less significant for the sample with cobalt-added SrZrO3 interlayer than the sample with pure SrZrO3 layer, supporting the hypothesis that Co migration may lead to the activation behavior.  相似文献   
2.
针对传统的电弧电路故障检测结果不准确的问题,设计用于电弧检测的SoC系统,并且在55nm工艺下进行流片验证。采用包含两种结构的模数转换器的片上电压源,设计了锁相环以及复位电路,精度最高可达8.67 bit。验证结果表明,本设计可提高电弧检测的准确性。  相似文献   
3.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
4.
在80 MHz~1 GHz频段,单个功率管输出功率能达到100 W以上,为研制输出功率400 W的功率放大器,文中设计了四路功率合成器。该合成器需要实现功率容量大、工作频带宽、体积小的设计目标。在功率容量方面,文中采用悬置带状线结构,其功率容量远远大于微带线结构;在工作频带方面,采用切比雪夫九节阻抗变换器,将工作带宽拓宽为80 MHz~1 GHz;在体积方面,文中合成器的功率合成部分采用Y型节级联实现四路功率合成,阻抗变换部分采用切比雪夫阻抗变换器进行阻抗变换,该结构相较于磁环巴伦功率合成器,不但具有损耗小、平坦度高的优点,而且通过将阻抗变换器设计成曲折的形状,进一步缩小了合成器体积。仿真与实测结果显示该合成器在80 MHz~1 GHz范围内还具有较高的平坦度,合成效率可达90%以上。  相似文献   
5.
This article proposes an active balancer, which features bidirectional charge shuttling and adaptive equalization current control, to fast counterbalance the state of charge (SOC) of cells in a lithium-ion battery (LIB) string. The power circuit consists of certain bidirectional buck-boost converters to transfer energy among the different cells back and forth. Owing to the characterization of the open-circuit voltage (OCV) vs SOC in LIB being relatively smooth near the SOC middle range, the SOC-inspected balance strategy can achieve more precise and efficient equilibrium than the voltage-based control. Accordingly, a compensated OCV-based SOC estimation is put forward to take into account the discrepancy of SOC estimation. Besides, the varied-duty-cycle (VDC) and curve-fitting modulation (CFM) methods are devised herein to tackle the problems of slow equalization rate and low balance efficacy, which arise from the diminution in balancing current as the SOC difference between the cells decreases in the later duration of equalization especially. The proposed strategies have taken the battery nonlinear characteristic and circuit parameter nonideality into account and can adaptively modulate the duty cycle with the SOC difference to keep balancing current constant throughout the balancing cycle. Simulated and experimental results are given to demonstrate the feasibility and effectiveness of the same prototype constructed. Compared with the fixed duty cycle and the VDC methods, the proposed CFM has the best balancing efficiency of 81.4%, and the balance time is shortened by 27.1% and 18.6%, respectively.  相似文献   
6.
Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical-poling-induced ion migration, accounting for many unusual attributes and thus performance in perovskite-based devices, remain comparatively elusive. Herein, the electrical-poling-promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus-assisted solution-printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical-poling-induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical-poling-triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion-migration-produced polarization potential may represent an important endeavor toward a wide range of high-performance perovskite-based photodetectors, solar cells, transistors, scintillators, etc.  相似文献   
7.
Dense granule proteins (GRAs) are essential components in Toxoplasma gondii, which are suggested to be promising serodiagnostic markers in toxoplasmosis. In this study, we investigated the function of GRA9 in host response and the associated regulatory mechanism, which were unknown. We found that GRA9 interacts with NLR family pyrin domain containing 3 (NLRP3) involved in inflammation by forming the NLRP3 inflammasome. The C-terminal of GRA9 (GRA9C) is essential for GRA9–NLRP3 interaction by disrupting the NLRP3 inflammasome through blocking the binding of apoptotic speck-containing (ASC)-NLRP3. Notably, Q200 of GRA9C is essential for the interaction of NLRP3 and blocking the conjugation of ASC. Recombinant GRA9C (rGRA9C) showed an anti-inflammatory effect and the elimination of bacteria by converting M1 to M2 macrophages. In vivo, rGRA9C increased the anti-inflammatory and bactericidal effects and subsequent anti-septic activity in CLP- and E. coli- or P. aeruginosa-induced sepsis model mice by increasing M2 polarization. Taken together, our findings defined a role of T. gondii GRA9 associated with NLRP3 in host macrophages, suggesting its potential as a new candidate therapeutic agent for sepsis.  相似文献   
8.
In this paper, a new design procedure for LLC converter has been introduced. In fact, this method is a computer-based design algorithm based on a numerical technique. In the process of designing, the value of the resonant element is obtained by solving the LLC converter fundamental equation. This converter will be controlled by using state feedback, such as output voltage variable. As a matter of fact, in a control system, the change of output voltage (because of load variation) will affect the switching frequency, so the output voltage will be tuned. In the designing process, the fundamental equations of LLC converter are obtained, and the value of the resonant elements is calculated. Also, a comparison analysis is carried out between the proposed and typical methods. The simulation is done to investigate the validity of the proposed method. Moreover, a prototype is manufactured, and the experimental test is done to evaluate its applicability.  相似文献   
9.
10.
《Ceramics International》2022,48(2):1889-1897
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) are considered to be one of the most promising materials in the electromagnetic (EM) stealth of aero-engines, which is expected to achieve strong absorption and broad-band performance. Multiscale structural design was applied to SiCf/Si3N4–SiOC composites by construction of micro/nanoscale heterogeneous interfaces and macro double-layer impedance matching structure. SiCf/Si3N4–SiOC composites were fabricated by using SiC fibers with different conductivities and SiOC–Si3N4 matrices with gradient impedance structures to improve impedance matching effectively. Owing to its unique structure, SiCf/Si3N4–SiOC composites (A3-composites) achieved excellent EM wave absorption performance with a minimum reflection coefficient (RCmin) of ?25.1 dB at 2.45 mm and an effective absorption bandwidth (EAB) of 4.0 GHz at 2.85 mm in X-band. Moreover, double-layer SiCf/Si3N4–SiOC with an improved impedance matching structure obtained an RCmin of ?56.9 dB and an EAB of 4.2 GHz at 3.00 mm, which means it can absorb more than 90% of the EM waves in the whole X-band. The RC is less than ?8 dB at 2.6–2.8 mm from RT to 600 °C in the whole X-band, displaying excellent high-temperature absorption performance. The results provide a new design opinion for broad-band EM absorbing SiCf-CMCs at high temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号