首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8771篇
  免费   1113篇
  国内免费   616篇
电工技术   717篇
综合类   450篇
化学工业   570篇
金属工艺   216篇
机械仪表   432篇
建筑科学   132篇
矿业工程   101篇
能源动力   245篇
轻工业   91篇
水利工程   29篇
石油天然气   31篇
武器工业   81篇
无线电   4023篇
一般工业技术   2288篇
冶金工业   94篇
原子能技术   131篇
自动化技术   869篇
  2024年   8篇
  2023年   206篇
  2022年   118篇
  2021年   261篇
  2020年   318篇
  2019年   288篇
  2018年   252篇
  2017年   354篇
  2016年   352篇
  2015年   340篇
  2014年   563篇
  2013年   542篇
  2012年   541篇
  2011年   634篇
  2010年   508篇
  2009年   520篇
  2008年   535篇
  2007年   559篇
  2006年   528篇
  2005年   439篇
  2004年   367篇
  2003年   373篇
  2002年   262篇
  2001年   227篇
  2000年   249篇
  1999年   175篇
  1998年   151篇
  1997年   85篇
  1996年   101篇
  1995年   79篇
  1994年   89篇
  1993年   69篇
  1992年   76篇
  1991年   49篇
  1990年   46篇
  1989年   39篇
  1988年   34篇
  1987年   9篇
  1986年   17篇
  1985年   17篇
  1984年   35篇
  1983年   33篇
  1982年   26篇
  1981年   4篇
  1980年   2篇
  1978年   2篇
  1977年   4篇
  1975年   4篇
  1962年   2篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Ferrites are materials of interest due to their broad applications in high technological devices and a lot of research has been focused to synthesize new ferrites. In this regard, an effort has been devoted to synthesize spinel Pr–Ni co-substituted strontium ferrites with a nominal formula of Sr1-xPrxFe2-yNiyO4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0). The cubic structure of pure and Pr–Ni co-substituted strontium ferrite samples calcinated at 1073 K for 3 h has been confirmed through X-ray diffraction (XRD). Average sizes of crystallites (18–25 nm) have been estimated from XRD analysis and nanometer particle sizes of synthesized ferrites have been further verified by scanning electron microscopy (SEM). SEM results have also shown that particles are mostly agglomerated and all the samples possess porosity. It has been observed that at 298 K, the values of resistivity (ρ) increase, while that of AC conductivity, dielectric loss, and dielectric constants decrease with increasing amounts of Pr3+ and Ni2+ ions. The values of dielectric parameters initially decrease with frequency and later become constant and can be explained on the basis of dielectric polarization. Electrochemical impedance spectroscopy (EIS) studies show that the charge transport phenomenon in ferrite materials is mainly controlled via grain boundaries. Overall, synthesized ferrite materials own enhanced resistivity values in the range of 1.38 × 109–1.94 × 109 Ω cm and minimum dielectric losses, which makes them suitable candidates for high frequency devices applications.  相似文献   
2.
3.
In the past, thinking of carrying electronic devices inside our bodies was only posed by non-real scenarios. The emergence of insertable devices has changed this. Since this technology is still in its initial development stages, few studies have investigated factors that influence its acceptance. This paper analyzes the predictors of the intention to use non-medical insertable devices in two Latin American contexts. We used partial least squares structural equation modeling to examine whether six constructs predicted intention to use insertable devices. A questionnaire was administered to undergraduate students located in Colombia and Chile (n = 672). We also examined whether these predictors influenced intention differently for both of them. Four common constructs significantly and positively influenced both Chilean and Colombian respondents to use insertable devices (hedonic motivation, habit, performance expectancy, and social influence). Also, the habit has a complementary mediating effect on the relationship between social influence and behavioral intention. By contrast, effort expectations were a positive and significant predictor, but only among Chilean respondents. Findings suggest that when technologies are emerging, well-known predictors of intention (e.g., performance and effort expectations) are less influential than predictors related to self-efficacy (e.g., habit and hedonic motivation). The use of insertable devices has a significant impact on society. Thus, a better understanding of what motivates their use has implications for both academia and industry.  相似文献   
4.
Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.  相似文献   
5.
Developing high-performance visible-to-UV photon upconversion systems based on triplet–triplet annihilation photon upconversion (TTA-UC) is highly desired, as it provides a potential approach for UV light-induced photosynthesis and photocatalysis. However, the quantum yield and spectral range of visible-to-UV TTA-UC based on nanocrystals (NCs) are still far from satisfactory. Here, three different sized CdS NCs are systematically investigated with triplet energy transfer to four mediators and four annihilators, thus substantially expanding the available materials for visible-to-UV TTA-UC. By improving the quality of CdS NCs, introducing the mediator via a direct mixing fashion, and matching the energy levels, a high TTA-UC quantum yield of 10.4% (out of a 50% maximum) is achieved in one case, which represents a record performance in TTA-UC based on NCs without doping. In another case, TTA-UC photons approaching 4 eV are observed, which is on par with the highest energies observed in optimized organic systems. Importantly, the in-depth investigation reveals that the direct mixing approach to introduce the mediator is a key factor that leads to close to unity efficiencies of triplet energy transfer, which ultimately governs the performance of NC-based TTA-UC systems. These findings provide guidelines for the design of high-performance TTA-UC systems toward solar energy harvesting.  相似文献   
6.
Charge-based field-effect transistors (FETs) greatly suffer from unavoidable carrier scattering and heat dissipation. Analogous to valley degree of freedom in semiconductors, chiral anomaly current in Weyl/Dirac semimetals is theoretically predicted to be nearly nondissipative over long distances, but still lacks experimental ways to efficiently control its transport. Here, field-effect chirality devices are demonstrated with Dirac semimetal PtSe2, in which its Fermi level is close to the Dirac point in the conduction band owing to intrinsic defects. The chiral anomaly is further corroborated by the planar Hall effect and nonlocal valley transport measurement, which can also be effectively modulated by external fields, showing robust nonlocal valley transport with micrometer diffusion length. Similar to charge-based FETs, the chiral conductivity in PtSe2 devices can be modulated by electrostatic gating with an ON/OFF ratio of more than 103. Basic logic functions in the devices are also demonstrated with electric and magnetic fields as input signals.  相似文献   
7.
Doped semiconductor, a newly discovered plasmonic nanomaterial, has attracted tremendous interest due to its tunable properties. In the field of photocatalysis, the perfect combination of metal-like and semiconductor properties makes it the replacement and supplement of metal plasmonic nanomaterials. This new plasmonic photocatalysis offers high conversion efficiencies and wide optical absorption range with low fabrication costs. This article reviews the recent developments and achievements by which the localized surface plasmon resonance (LSPR) in non-metal plasmonic nanomaterial for photocatalytic applications, including pure non-metal plasmonic photocatalysts and various enhancement strategies such as doping, co-catalyst, heterojunction, LSPR coupling and upconversion luminescence enhancement. It broadens the horizons for plasmonics in the study of photocatalysis and even in energy-related applications.  相似文献   
8.
An easily accessible anthraquinone-benzodithiophene-based high bandgap polymer (PTAq) was synthesized by Stille coupling reactions in remarkably high yield (96.5%). The highest occupied molecular orbital energy level of the polymer was estimated from the onset of oxidation in a cyclic voltammetry study to be −5.7 eV. PTAq showed an orange-to-green color switching with the application of a 1.0-V external potential to the polymer film, which was visible to the naked eye. The optical behavior change was also monitored using ultraviolet–visible absorption spectroscopy and revealed a respectable 75% transmittance change when the polymer film was subjected to a 1.0-V external potential. The high color contrast observed makes PTAq one of the most promising materials for electrochromic device applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47729.  相似文献   
9.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
10.
《Ceramics International》2021,47(19):27177-27187
BaZrO3-based materials doped with a trivalent cation have excellent chemical stability and relatively high proton conductivity which makes them potential proton conducting oxide materials for various electrochemical device applications such as hydrogen processing, high-temperature electrolysis, and solid electrolyte in fuel cells. However, BaZrO3 showed poor sinterability, requiring high sintering temperatures (1700–2100 °C) with longtime sintering (20–100 h) to achieve the desired microstructure and grain growth. This sintering problem can be solved by slightly doping BaZrO3 with a sintering aid element. Therefore, in this study, two different zirconate proton conductors: BaZr0·9Y0·1O3-α (BZY) and BaZr0·955Y0·03Co0·015O3-α (BZYC) were sintered in an air atmosphere and an oxygen atmosphere for 20 h in the temperature range of 1500–1640 °C. The sinterability was evaluated by analyzing the XRD diffraction patterns, lattice constant, lattice strain, crystallite size, relative density, open porosity, closed porosity, surface morphology, grain size, and grain boundary distribution, using the XRD, SEM, EDX, and Archimedes density measurement methods. It is concluded that in an oxygen atmosphere, sintering aid Co not only improves the relative density but also produces highly dense fine particles with clear grain boundaries which are promising for electrochemical hydrogen device applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号