首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   12篇
  国内免费   3篇
综合类   1篇
化学工业   6篇
机械仪表   1篇
轻工业   2篇
无线电   20篇
一般工业技术   12篇
  2023年   5篇
  2022年   1篇
  2021年   6篇
  2020年   6篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2008年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
The gold standard treatment of large segmental bone defects is autologous bone transfer, which suffers from low availability and additional morbidity. Tissue engineered bone able to engraft orthotopically and a suitable animal model for pre-clinical testing are direly needed. This study aimed to evaluate engraftment of tissue-engineered bone with different prevascularization strategies in a novel segmental defect model in the rabbit humerus. Decellularized bone matrix (Tutobone) seeded with bone marrow mesenchymal stromal cells was used directly orthotopically or combined with a vessel and inserted immediately (1-step) or only after six weeks of subcutaneous “incubation” (2-step). After 12 weeks, histological and radiological assessment was performed. Variable callus formation was observed. No bone formation or remodeling of the graft through TRAP positive osteoclasts could be detected. Instead, a variable amount of necrotic tissue formed. Although necrotic area correlated significantly with amount of vessels and the 2-step strategy had significantly more vessels than the 1-step strategy, no significant reduction of necrotic area was found. In conclusion, the animal model developed here represents a highly challenging situation, for which a suitable engineered bone graft with better prevascularization, better resorbability and higher osteogenicity has yet to be developed.  相似文献   
2.
《Ceramics International》2020,46(10):16328-16336
Zirconia is becoming a promising solution for biomedical applications, namely for dental implants, due to its biocompatibility, and mechanical and aesthetical properties. Despite the constant developments in the dentistry field, strategies to promote an effective vascularization at the implant's surface and consequently improved osseointegration are still not enough.In this sense, with the aim of promoting the vascularization at the implant's surface, zirconia surfaces with micro-channels were designed and evaluated regarding their hydrophilicity and capillarity. A CAD/CAM system was used to design and produce the specimens and different techniques were used to characterize the surfaces. The obtained average surface roughnesses are in accordance with the literature for similar materials. Results revealed that the produced materials present high levels of hydrophilicity, whether in contact with water or FBS - Fetal Bovine Serum. Additionally, micro-channels with 200 μm of width and 100 μm of depth were the ones that presented higher capillarity, thus being promising solutions for the promotion of implants vascularization, and consequently improved osseointegration.  相似文献   
3.
Functional vascularization is critical for the clinical regeneration of complex tissues such as kidney, liver, or bone. The immobilization or delivery of growth factors has been explored to improve vascularization capacity of tissue‐engineered constructs; however, the use of growth factors has inherent problems such as the loss of signaling capability and the risk of complications including immunological responses and cancer. Here, a new method of preparing water‐insoluble silk protein scaffolds with vascularization capacity using an all‐aqueous process is reported. Acid is added temporally to tune the self‐assembly of silk in the lyophilization process, resulting in water‐insoluble scaffold formation directly. These biomaterials are mainly noncrystalline, offering improved cell proliferation than previously reported silk materials. These systems also have an appropriate softer mechanical property that could provide physical cues to promote cell differentiation into endothelial cells, and enhance neovascularization and tissue ingrowth in vivo without the addition of growth factors. Therefore, silk‐based degradable scaffolds represent an exciting biomaterial option, with vascularization capacity for soft tissue engineering and regenerative medicine.  相似文献   
4.
A remaining challenge in tissue engineering approaches is the in vitro vascularization of engineered constructs or tissues. Current approaches in engineered vascularized constructs are often limited in the control of initial vascular network geometry, which is crucial to ensure full functionality of these constructs with regard to cell survival, metabolic activity, and potential differentiation ability. Herein, the combination of 3D‐printed poly‐ε‐caprolactone scaffolds via melt electrospinning writing with the cell‐accumulation technique to enable the formation and control of capillary‐like network structures is reported. The cell‐accumulation technique is already proven itself to be a powerful tool in obtaining thick (50 µm) tissues and its main advantage is the rapid production of tissues and its ease of performance. However, the applied combination yields tissue thicknesses that are doubled, which is of outstanding importance for an improved handling of the scaffolds and the generation of clinically relevant sample volumes. Moreover, a correlation of increasing vascular endothelial growth factor secretion to hypoxic conditions with increasing pore sizes and an assessment of the formation of neovascular like structures are included.  相似文献   
5.
Herein, a 3D bioprinted scaffold is proposed, containing a calcitonin gene-related peptide (CGRP) and the β-adrenergic receptor blocker propranolol (PRN) as a new method to achieve effective repair of bone defects. By leveraging the neuromodulation mechanism of bone regeneration, CGRP and PRN loaded mesoporous silica nanoparticles are added into a hybrid bio-ink, which initially contains gelatin methacrylate, Poly (ethylene glycol) diacrylate and bone marrow mesenchymal stem cells (BMSCs). Subsequently, the optimized bio-ink is used for 3D bioprinting to create a composite scaffold with a pre-designed micro-nano hierarchical structure. The migration and tube formation of human umbilical vein endothelial cells (HUVECs) can be promoted by the scaffold, which is beneficial to the formation of a new capillary network during the bone repair process. With the release of CGRP from the scaffold, the secretion of neuropeptides by sensory nerves is simulated. Meanwhile, the release of PRN can inhibit the binding process of catecholamine to β-adrenergic receptor, co-promoting the osteogenic differentiation of BMSCs with CGRP and silicon ions, which will effectively enhance bone repair of a critical-sized cranial defect in a rat model. In conclusion, this study provides a promising strategy for bone defect repair by understanding the neuromodulatory mechanisms during bone regeneration.  相似文献   
6.
Tissue-engineered scaffolds have been extensively explored for treating bone defects; however, slow and insufficient vascularization throughout the scaffolds remains a key challenge for further application. Herein, a versatile microfluidic 3D printing strategy to fabricate black phosphorus (BP) incorporated fibrous scaffolds with photothermal responsive channels for improving vascularization and bone regeneration is proposed. The thermal channeled scaffolds display reversible shrinkage and swelling behavior controlled by near-infrared irradiation, which facilitates the penetration of suspended cells into the scaffold channels and promotes the prevascularization. Furthermore, the embedded BP nanosheets exhibit intrinsic properties for in situ biomineralization and improve in vitro cell proliferation and osteogenic differentiation. Following transplantation in vivo, these channels also promote host vessel infiltration deep into the scaffolds and effectively accelerate the healing process of bone defects. Thus, it is believed that these near-infrared responsive channeled scaffolds are promising candidates for tissue/vascular ingrowth in diverse tissue engineering applications.  相似文献   
7.
From microscaled capillaries to millimeter‐sized vessels, human vasculature spans multiple scales and cell types. The convergence of bioengineering, materials science, and stem cell biology has enabled tissue engineers to recreate the structure and function of different hierarchical levels of the vascular tree. Engineering large‐scale vessels aims to replace damaged arteries, arterioles, and venules and their routine application in the clinic may become a reality in the near future. Strategies to engineer meso‐ and microvasculature are extensively explored to generate models for studying vascular biology, drug transport, and disease progression as well as for vascularizing engineered tissues for regenerative medicine. However, bioengineering tissues for transplantation has failed to result in clinical translation due to the lack of proper integrated vasculature for effective oxygen and nutrient delivery. The development of strategies to generate multiscale vascular networks and their direct anastomosis to host vasculature would greatly benefit this formidable goal. In this review, design considerations and technologies for engineering millimeter‐, meso‐, and microscale vessels are discussed. Examples of recent state‐of‐the‐art strategies to engineer multiscale vasculature are also provided. Finally, key challenges limiting the translation of vascularized tissues are identified and perspectives on future directions for exploration are presented.  相似文献   
8.
The “double-edged sword” effect of macrophages under the influence of different microenvironments determines the outcome and prognosis of tissue injury. Accurate and stable reprogramming macrophages (Mφ) are the key to rapid wound healing. In this study, an immunized microsphere-engineered GelMA hydrogel membrane is constructed for oral mucosa treatment. The nanoporous poly(lactide-co-glycolide) (PLGA) microsphere drug delivery system combined with the photo-cross-linkable hydrogel is used to release the soybean lecithin (SL)and IL-4 complexes (SL/IL-4) sustainedly. In this way, it is realized effective wound fit, improvement of drug encapsulation, and stable triphasic release of interleukin-4 (IL-4). In both in vivo and in vitro experiments, it is demonstrated that the hydrogel membrane can reprogram macrophages in the microenvironment into M2Mφ anti-inflammatory types, thereby inhibiting the local excessive inflammatory response. Meanwhile, high levels of platelet-derived growth factor (PDGF) secreted by M2Mφ macrophages enhanced neovascular maturation by 5.7-fold, which assisted in achieving rapid healing of oral mucosa. These findings suggest that the immuno-engineered hydrogel membrane system can re-modulating the biological effects of Mφ, and potentiating the maturation of neovascularization, ultimately achieving the rapid repair of mucosal tissue. This new strategy is expected to be a safe and promising immunomodulatory biomimetic material for clinical translation.  相似文献   
9.
Mimicking natural tissue structure is crucial for engineered tissues with intended applications ranging from regenerative medicine to biorobotics. Native tissues are highly organized at the microscale, thus making these natural characteristics an integral part of creating effective biomimetic tissue structures. There exists a growing appreciation that the incorporation of similar highly organized microscale structures in tissue engineering may yield a remedy for problems ranging from vascularization to cell function control/determination. In this review, we highlight the recent progress in the field of microscale tissue engineering and discuss the use of various biomaterials for generating engineered tissue structures with microscale features. In particular, we will discuss the use of microscale approaches to engineer the architecture of scaffolds, generate artificial vasculature, and control cellular orientation and differentiation. In addition, the emergence of microfabricated tissue units and the modular assembly to emulate hierarchical tissues will be discussed.  相似文献   
10.
Bone tissue engineering (BTE) is a rapidly growing field aiming to create a biofunctional tissue that can integrate and degrade in vivo to treat diseased or damaged tissue. It has become evident that scaffold fabrication techniques are very important in dictating the final structural, mechanical properties, and biological response of the implanted biomaterials. A comprehensive review of the current accomplishments on scaffold fabrication techniques, their structure, and function properties for BTE is provided herein. Different types of biomaterials ranging from inorganic biomaterials to natural and synthetic polymers and related composites for scaffold processing are presented. Emergent scaffolding techniques such as electrospinning, freeze-drying, bioprinting, and decellularization are also discussed. Strategies to improve vascularization potential and immunomodulation, which is considered a grand challenge in BTE scaffolding, are also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号