首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
建筑科学   3篇
一般工业技术   2篇
  2022年   3篇
  2020年   1篇
  2019年   1篇
排序方式: 共有5条查询结果,搜索用时 328 毫秒
1
1.
公路隧道服役过程中会产生诸多衬砌病害,其会影响隧道的结构耐久性与运营安全性,对隧道表观病害进行高效智能化识别至关重要。常用的人工巡检方式效率低下且准确率低,而基于深度学习算法进行表观病害智能识别能提高检测的效率和准确性,相较于传统方法而言在实际隧道工程中具有更好的应用前景。利用深度学习可以学习隧道病害的特征信息,有利于未来隧道病害识别智能化的发展。简述深度学习在隧道表观病害识别中的应用原理,从人工拍照方法、数字图像采集和激光扫描技术三方面介绍病害图像的采集,从标注软件和数据增强方法总结数据集的构建和扩充方法,在图像分类、目标检测、语义分割三方面总结深度学习算法在隧道病害检测的应用现状,归纳当前应用的不足之处,最后分析与展望深度学习在隧道表观病害智能化识别方向广泛应用需要研究的问题与方向。  相似文献   
2.
强度理论是研究复杂应力状态下材料是否破坏的理论,该文总结了古典强度理论以及混凝土和各向同性岩石等两类现代强度理论,将各项同性现代强度理论分为剪应力强度理论、八面体强度理论与主应力强度理论。通过收集国内外已有相关三轴实验数据对各种主要强度理论进行论述、比较与评价,在此基础上对混凝土和各向同性岩石的主应力空间损伤比强度理论进行展望。  相似文献   
3.
管片接头是盾构隧道衬砌的渗漏水多发区域,长期渗流导致荷载分布和受力模式变化,危及结构安全。针对现有研究难以对接头渗漏下盾构隧道力学特性准确模拟的现状,提出一种新的模拟分析思路,基于开发的接头联接单元模拟盾构衬砌接头位置的力学变形响应,采用有限元软件二次开发数值实现接头渗流,要点在于密封垫张开引起的接触应力和外水压力动态变化的迭代分析,进而建立管片接头渗流下的盾构隧道流固耦合数值模型。结合上海地铁盾构隧道工程实例,对不同接头渗流、渗流量、接头刚度和防水性能等因素影响下的隧道力学变形机理和地表沉降规律进行分析。研究发现:管片接头位置与渗流量对于衬砌结构的内力存在一定影响,具体表现为弯矩明显增加而轴力略微减小,拱腰接头发生渗流对结构内力的影响最大。隧道结构的变形随着渗流量的增加而增加,且基本呈正比关系;拱腰、拱底和拱顶接头发生渗流时对结构侧向移动和变形的影响依次减小。隧道结构和地表沉降随着管片接头渗流量增加而增加,且基本呈正比关系;拱顶接头发生渗流时,地表沉降最大但隧道沉降最小;拱底接头发生渗流时,地表沉降最小但隧道沉降最大。研究成果对完善盾构隧道流固耦合分析模型有一定参考价值。  相似文献   
4.
类矩形盾构隧道具有断面利用率大、覆土浅、施工成本低等优点,在城市高密度区域具有广泛的应用前景。相较于广泛使用的圆形隧道,类矩形隧道由于自身成拱效应较差,隧道肩部接头结构易产生较大的剪切荷载,有必要对接头的剪切性能进行研究。文章以某大断面类矩形盾构隧道为原型,以混凝土管片接头为试验对象,采用足尺试验方法对其抗剪切性能进行研究,归纳宏观破坏现象,获得了剪轴比(接头剪力/轴力)-相对错台量关系等整体力学响应特性,得到了剪力-螺栓应变曲线和剪力-混凝土表面应变等局部力学响应特性,并引入数字照相分析技术(DIC)对接头结构的开裂破坏全过程进行记录,分析剪切裂缝的扩展规律,最后对结构的抗剪承载性能进行评价。基于试验数据总结了管片错台随剪轴比的“四阶段”变化规律:克服摩擦阶段(剪轴比小于0.4)、间隙闭合阶段(剪轴比为0.4~0.75)、抗剪强化阶段(剪轴比为0.75~2.76)、屈服破坏阶段(剪轴比大于2.76)。试验结果表明,剪切荷载作用下该断面形式的大断面类矩形盾构隧道接头抗剪切屈服剪轴比为2.76,具有较好的抗剪切承载性能。研究成果可以为类似类矩形盾构隧道工程提供理论支撑和技术参考。  相似文献   
5.
目的 探究温度和孔隙率对闭孔泡沫铝材料压缩力学性能和变形机理的影响。方法 将孔隙率为84.3%~87.3%的泡沫铝试件在温度25~700 ℃内进行加热处理,对处理后的试样开展准静态压缩实验。结果 在准静态压缩条件下,闭孔泡沫铝材料在不同温度加热处理后的压缩应力–应变曲线均经历了3个阶段:弹性阶段、塑性平台阶段和密实阶段。孔隙率从87.3%减小到84.3%时,其弹性模量增大了44.4 MPa,屈服强度增大了0.39 MPa,平台应力增大了0.94 MPa。孔隙率为84.3%的泡沫铝,在25 ℃时,其弹性模量为141.4 MPa、屈服强度为4.25 MPa、平台应力为4.75 MPa;当加热温度为500 ℃时,弹性模量减小到了128.0 MPa、屈服强度减小到了4.22 MPa、平台应力减小到了4.51 MPa。结论 泡沫铝的弹性模量、抗压屈服强度和平台应力均随孔隙率的增加而减小;加热温度低于500 ℃以下时,泡沫铝材料力学性能变化很小,但屈服强度和弹性模量均小幅度降低;在压缩载荷下,泡沫铝的变形破坏模式呈现出先从试件铝基体较薄弱部分产生孔壁塑性变形、孔洞坍塌,并逐渐出现断裂压缩带,直至泡沫铝孔洞完全坍塌密实。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号