首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   4篇
  国内免费   1篇
电工技术   1篇
化学工业   6篇
一般工业技术   7篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   1篇
排序方式: 共有14条查询结果,搜索用时 593 毫秒
1.
李朋松  杨卓鸿  袁腾 《涂料工业》2021,51(10):54-61
为充分发挥植物油基 UV固化低聚物的结构优势,简化制备工艺,本研究利用腰果酚和蓖麻油的羟基,采用一锅法分别制备出无溶剂型腰果酚基和蓖麻油基 UV固化低聚物。将不同比例的 2种植物油基低聚物复配,制备出一系列光固化膜,探究不同比例下光固化膜的动态热机械性能、热稳定性能、拉伸性能和一般涂层性能等。结果表明:随着腰果酚基低聚物含量的增加,固化膜的玻璃化转变温度由 36. 4 ℃上升到 44. 4 ℃,柔韧性不变的情况下,铅笔硬度由 2H提升到 4H。  相似文献   
2.
耦合农业和能源系统的生物质热电炭联产研究   总被引:1,自引:0,他引:1  
农业园区内生物质的集中处置具有便利性、经济性、规模灵活性等优势,生物质发电是农业园区能源系统的核心,但电力产能过剩或季节变化易导致资源浪费,引人生物质制炭产业可与生物质发电形成高效协同的产业模式.通过分析生物质热解制炭的研究进展及副产物处理的不足之处,提出将生物质燃烧发电、燃烧供热、生物质热解制炭耦合农业和能源系统,形成生物质能源的热电炭联产系统,实现园区内生物质燃烧发电供应电网、农业设施和用户,燃烧供热保证冬季低温时农业设施、温室大棚的取暖需求,热解制炭保证园区生物质生长及环境治理的需求,该系统有利于完善农业园区能源互联网的构建和实现"碳中和"的目标.  相似文献   
3.
目的 探讨木薯秸秆粉的粒径和含量对复合材料物理力学性能及界面结合的影响,以期提高废弃木薯秸秆的利用率。方法 以木薯秸秆粉为增强体,高密度聚乙烯(HDPE)为基体,马来酸酐接枝聚乙烯(MAPE)为偶联剂制备木塑复合材料。对木塑复合材料进行拉伸性能、弯曲性能、缺口冲击强度以及吸水性测试,并利用电子显微镜(SEM)对复合材料断面微观结构进行观察和分析。结果 随着秸秆粉含量的增大,拉伸强度和弯曲强度在整体上呈现出增大的趋势,最大值分别可以达到32.5 MPa和49.6MPa,而缺口冲击强度不断下降;当粒径减小时,材料的拉伸强度呈现先下降而后升高的趋势,弯曲强度区别不大,而缺口冲击强度则整体上呈现降低的趋势。当秸秆粉的含量降低、粒径减小时,复合材料表现出较好耐水性能。结论 秸秆粉质量分数为60%,粒径为40~60目时复合材料具有较优异的综合性能,相关性能超过GB/T 24137—2009《木塑装饰板》的使用标准。  相似文献   
4.
制备了不同杨木纤维含量的杨木纤维/聚乙烯复合材料,利用Hirsch模型、Kelly-Tyson模型和Bowyer-Bader模型对杨木纤维/聚乙烯复合材料的微观力学进行建模,通过对杨木纤维/聚乙烯复合材料及塑料基体的拉伸应力-应变曲线和杨木纤维长度分布的研究,计算得到杨木纤维在聚乙烯基体中的取向系数、界面剪切强度和本征抗拉强度,解释了杨木纤维/聚乙烯复合材料拉伸性能的变化规律。此外,利用微观力学模型计算得到了亚临界纤维、超临界纤维、塑料基体对杨木纤维/聚乙烯复合材料拉伸强度的贡献比例。   相似文献   
5.
木塑复合材料(WPCs)已广泛应用于建筑外墙板、户外铺板、室内装饰、园林景观、汽车内饰等非承重结构材料领域,但由于线型或支链型热塑性聚合物固有的粘弹特性决定了WPCs在受到长期力载荷时易发生蠕变变形,严重影响其作为承重结构材使用。因此抗蠕变是木塑产业界面临的重大技术瓶颈,也是学术界关注的核心科学问题。为更好地了解并改善WPCs的蠕变现象,本文综述了WPCs蠕变行为的研究进展,讨论了原材料、结构和环境条件等因素对其抗蠕变性能的影响,并对WPCs抗蠕变的改进方法进行了总结和分析。WPCs长期蠕变行为测试是评价其耐久性和安全性的必要手段,但传统的长期蠕变测试方法耗时且成本高昂。通过蠕变与时间、温度和外界应力等因素存在的经验关系,可以实现蠕变的加速测试。最后讨论了玻耳兹曼叠加原理、时间-温度-应力叠加原理、分步等温度法和分步等应力法等加速测试方法在WPCs长期蠕变预测中的应用。   相似文献   
6.
以杨木纤维(WF)为增强材料,以高密度聚乙烯(HDPE)为基体,马来酸酐接枝聚乙烯(MAPE)为偶联剂,采用熔融挤出法制备了WF/HDPE复合材料。选取WF含量、偶联剂添加量、挤出温度为自变量,试件的抗冲击强度、弯曲强度、拉伸强度为响应值,采用Box-Behnken Design方法设计实验并利用响应曲面法建立WF/HDPE复合材料力学强度的二次多项数学模型,对WF/HDPE复合材料的挤出工艺进行优化设计。结果表明,WF添加量、MAPE添加量和挤出温度的最佳水平为:47.37wt%、4.23wt%、173.69℃,此时WF/HDPE复合材料的抗冲击强度为4.06 kJ·m?2,弯曲强度为43.79 MPa,拉伸强度为28.59 MPa。模型预测值与实测值误差小于5%,较好地反映了WF/HDPE复合材料力学性能与挤出工艺因素间的关系。   相似文献   
7.
为了充分降低成本,增加环境友好性并获得良好的木质感,以杨木纤维和毛竹纤维为原料,通过挤出成型制备超高填充聚丙烯基木塑复合材料(UH-WPCs)。基于聚丙烯基体含量的大幅降低,对比分析了填充量和木质纤维种类对UH-WPCs高低温力学性能、高低温蠕变性能、热膨胀性能、尺寸稳定性及吸水性能的影响。结果表明,随着填充量从75wt%增加到90wt%,其线性热膨胀系数大幅降低,蠕变应变逐渐减小而在90wt%时增大;拉伸模量和弯曲模量随填充量的增加先升高而后在90wt%时下降;拉伸强度、弯曲强度和冲击强度随着填充量的增加逐渐降低;在低温?30℃时UH-WPCs的拉伸和弯曲性能较高,高温60℃时冲击韧性较好。温度、湿度及含水率变化均导致UH-WPCs尺寸变化,其中厚度方向尺寸变化率最大,其次为宽度方向,长度方向最小,表现出明显的各向异性;湿度对UH-WPCs的尺寸稳定性的影响远大于温度的作用。杨木基UH-WPCs综合性能优于毛竹基UH-WPCs,这与杨木纤维具有更大的长径比及良好的界面结合有关。UH-WPCs的研究为降低WPCs生产成本和拓宽其应用领域提供了理论依据。   相似文献   
8.
为提高环氧树脂力学性能和防腐性能,本研究利用丙烯酸对环氧开环制备环氧乙烯基酯树脂,并添加低浓度的甲基丙烯酸六氟丁酯,通过热固化制备出系列含氟固化膜。研究了固化膜的热力学性能、拉伸性能和防腐性能等,结果表明:当甲基丙烯酸六氟丁酯的添加量为 0. 4%(质量分数)时,固化膜的力学性能和防腐性能最优。拉伸强度由 44. 56 MPa提高到 59. 90 MPa,提高幅度为 34. 43%;在 3. 5% NaCl溶液中浸泡 82 d后,涂层的阻抗模量( f=0. 01 Hz)仍保持在 2. 43×109 Ω·cm2以上。将甲基丙烯酸六氟丁酯引入环氧乙烯基酯树脂中,使其性能得到改善,有利于其在海洋重防腐领域的应用。2  相似文献   
9.
为提升环氧(EP)树脂的阻燃性,首先采用三聚氰胺-甲醛预聚体(MF)原位功能化MXene纳米片制备了纳米阻燃填料(MF@MXene),随后将MF@MXene加入到EP树脂中,以4,4’-二氨基二苯基甲烷为固化剂,进一步研制了MXene基阻燃环氧复合材料。使用傅里叶变换红外光谱、扫描电子显微镜和能谱分析等手段分别表征了MXene和MF@MXene的化学结构、微观形貌和元素含量。采用拉伸试验机和锥形量热测试仪分别测试了复合材料的力学性能和阻燃性能。结果表明,MF@MXene可以显著改善MXene在环氧树脂中的分散性并提升EP复合材料的力学性能和阻燃性能。当MF@MXene的添加质量分数为2.0%时,EP复合材料的拉伸强度高达82.5 MPa,相比纯EP提升了20.2%;其热释放率峰值、总热释放量、烟雾释放率峰值和总烟雾释放量分别下降了36.99%,10.31%,25.81%,3.97%,展现出优异的力学和阻燃性能。  相似文献   
10.
多金属硫化物/碳(MMS/C)复合材料因其良好的结构稳定性、充足的活性位点和有益的协同效应,在能源、催化、传感、环境科学等领域具有良好的应用潜力。然而,MMS/C复合材料繁琐、低效和对环境有害的制备方法制约了其发展。本文报道了一种简易、通用的制备策略合成了系列MMS/C复合材料。该策略的关键是采用了碳源-非碳前驱体一体化的离子交换树脂-金属离子杂化组装体作为构筑单元,可实现均匀的多相有机/无机界面,在高温条件下原位生成封装于碳骨架中的金属硫化物。通过改变金属离子的种类,实现了14种MMS/C复合材料的合成。基于其组分和结构优势,所制MMS/C复合材料表现出高效、快速和持久的锂离子存储性能。其中,ZnS-Co9S8/C复合材料在0.1 A·g-1电流密度下循环600次后仍具有651 mAh·g-1的可逆储锂容量;当电流密度提高20倍时,容量保持率超过54%,展现出优异的倍率性能。本文提出的均一、多相有机/无机界面合成策略有望扩展用于制备其他金属化合物(如金属磷化物、金属硒化物等)/碳复合材料,为多金属化合物/碳复合材料的合成提供有效的途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号