首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  国内免费   2篇
  完全免费   83篇
  一般工业技术   300篇
  2016年   4篇
  2015年   10篇
  2014年   44篇
  2013年   33篇
  2012年   31篇
  2011年   24篇
  2010年   21篇
  2009年   22篇
  2008年   23篇
  2007年   13篇
  2006年   6篇
  2005年   4篇
  2004年   14篇
  2003年   6篇
  2002年   5篇
  2001年   12篇
  2000年   2篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
排序方式: 共有300条查询结果,搜索用时 31 毫秒
1.
基于EMD与神经网络的滚动轴承故障诊断方法   总被引:39,自引:14,他引:25  
针对滚动轴承故障振动信号的非平稳特征,提出了一种基于经验模态分解(Empirical Mode Decomposition,简称EMD)和神经网络的滚动轴承故障诊断方法。该方法首先对原始信号进行了经验模态分解,将其分解为多个平稳的固有模态函数(Intrinsic Mode function,简称IMF)之和,再选取若干个包含主要故障信息的IMF分量进行进一步分析,由于滚动轴承发生故障时,加速度振动信号各频带的能量会发生变化,因而可从各IMF分量中提取能量特征参数作为神经网络的输入参数来识别滚动轴承的故障类型。对滚动轴承的正常状态、内圈故障和外圈故障信号的分析结果表明,以EMD为预处理器提取各频带能量作为特征参数的神经网络诊断方法比以小波包分析为预处理器的神经网络诊断方法有更高的故障识别率,可以准确、有效地识别滚动轴承的工作状态和故障类型。  相似文献
2.
基于Hilbert边际谱的滚动轴承故障诊断方法   总被引:28,自引:15,他引:13  
Hilbert-Huang变换是一种新的自适应信号处理方法,它适合于处理非线性和非平稳过程。通过对信号进行Hilbert-Huang变换,可以得到信号的。Hilbert边际谱,它能精确地反映信号幅值随频率的变化规律。针对滚动轴承故障振动信号的非平稳特征,提出了一种基于Hilbert边际谱的滚动轴承故障诊断方法。该方法在Hilbert边际谱的基础上定义了特征能量函数,并以此作为滚动轴承的故障特征向量,建立M-距离判别函数来识别滚动轴承的故障类型。对滚动轴承的内圈、外圈故障信号的分析结果表明本方法可以有效地提取滚动轴承故障特征。  相似文献
3.
基于小波系数包络谱的滚动轴承故障诊断   总被引:23,自引:0,他引:23  
提出了基于正交小波变换诊断滚动轴承故障的新方法,利用正交小波基将滚动轴承故障振动信号变换到时间-尺度域,对高频段尺度域的小波系数进行包络细化谱分析,不仅能检测到滚动轴承故障的存在,而且能有效地识别滚动轴承的故障模式  相似文献
4.
基于径向基函数神经网络的滚动轴承故障模式的识别   总被引:22,自引:0,他引:22  
径向基函数(RBF)神经网络是一种3层前馈性神经网络,它具有较强的函数逼近能力和分类能力。鉴于径向基函数神经网络的优点,在对滚动轴承振动信号特征分析的基础上,提出了采用时序方法对其建立AR模型,利用AR模型参数建立径向基函数神经网络,并用该网络对滚动轴承的故障模式进行了识别。理论和试验证明了该方法的有效性,且具有较高的识别精度。  相似文献
5.
时间-小波能量谱在滚动轴承故障诊断中的应用   总被引:20,自引:10,他引:10  
为滚动轴承故障诊断提供了一种新途径,针对滚动轴承故障振动信号的特点,构造脉冲响应小波,采用连续小波变换的方法来提取滚动轴承故障振动信号的特征,在此基础上提出了一种滚动轴承故障诊断方法:时间-小波能量谱自相关分析法。通过对滚动轴承具有外圈缺陷、内圈缺陷的情况下振动信号的分析,说明时间-小波能量谱自相关分析法不仅能检测到滚动轴承故障的存在,而且能有效地识别滚动轴承的故障模式。  相似文献
6.
滚动轴承故障的EMD诊断方法研究   总被引:18,自引:0,他引:18  
提出了一种基于经验模式分解(Empirical Mode Decomposition,EMD)的滚动轴承故障诊断方法。这种方法中,局部损伤滚动轴承产生的高频调幅信号成分被EMD分解作为本征模函数分离出来,然后用Hilbert变换得到其包络信号,计算包络谱,就能够提取滚动轴承故障特征频率。该方法被用于分析实验台上采集的具有内圈损伤及外圈损伤的滚动轴承振动信号。分析结果表明,与传统的包络解调方法相比,新方法能够更有效地提取轴承故障特征,诊断轴承故障,因而具有重要的实用价值。  相似文献
7.
小波变换域双谱分析及其在滚动轴承故障诊断中的应用   总被引:16,自引:3,他引:13  
工程信号不仅会受到高斯噪声干扰,而且也会受到非高斯噪声干扰。而传统双谱分析方法从理论上仅能抑制高斯噪声,但对非高斯噪声是无能为力的。针对传统双谱存在的不足,将小波变换和双谱分析结合,提出了一种基于小波变换域非参数化双谱故障诊断方法,并应用到滚动轴承故障诊断中。考虑到滚动轴承信号幅值调制特点,在本方法中,对处理信号采用了希尔伯特变换技术,以进行解调。实验结果表明,小波域双谱优于传统双谱,特别是在非高斯噪声情况下,小波域双谱更有优势;研究为滚动轴承故障诊断提供了一种新的有效方法。  相似文献
8.
基于EMD和AR模型的滚动轴承故障诊断方法   总被引:15,自引:0,他引:15  
提出了基于EMD(Empirical Mode Decomposition)和AR模型的滚动轴承故障诊断方法。该方法用EMD将滚动轴承振动信号分解成若干个平稳的IMF(Intrinsic Mode Function)分量,对每一个IMF分量建立AR模型,以模型的自回归参数和残差的方差作为特征向量建立Mahalanobis距离判别函数,进而判断滚动轴承的工作状态和故障类型。实验结果分析表明,该方法能有效地应用于滚动轴承的故障诊断。  相似文献
9.
一种滚动轴承故障特征提取的新方法—谱相关密度   总被引:13,自引:4,他引:9  
本文简要地介绍了谱相关密度的概念及其对调幅信号的解调作用,并用数值仿真进行验证。针对滚动轴承故障信号含有调幅成分的特点,提出并讨论了利用谱相关密度来提取滚动轴承的故障特征的方法;最后通过对实验数据的处理及分析,说明谱相关密度在提取信号特征方面的有效性。  相似文献
10.
尺度-小波能量谱在滚动轴承故障诊断中的应用   总被引:12,自引:0,他引:12  
针对滚动轴承故障振动信号的特点,构造脉冲响应小波,采用连续小波变换的方法来提取滚动轴承故障振动信号的特征,在此基础上提出了一种滚动轴承故障诊断方法:尺度-小波能量谱比较法。通过对具有外圈缺陷、内圈缺陷的滚动轴承振动信号的分析,说明尺度-小波能量谱比较法不仅能检测到滚动轴承故障的存在,而且能有效地识别滚动轴承的故障模式。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号