首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28216篇
  免费   1785篇
  国内免费   2109篇
电工技术   825篇
综合类   1580篇
化学工业   6387篇
金属工艺   3301篇
机械仪表   1878篇
建筑科学   355篇
矿业工程   186篇
能源动力   1251篇
轻工业   2722篇
水利工程   89篇
石油天然气   453篇
武器工业   127篇
无线电   4230篇
一般工业技术   6798篇
冶金工业   662篇
原子能技术   463篇
自动化技术   803篇
  2024年   62篇
  2023年   365篇
  2022年   569篇
  2021年   724篇
  2020年   774篇
  2019年   696篇
  2018年   631篇
  2017年   907篇
  2016年   858篇
  2015年   847篇
  2014年   1264篇
  2013年   1730篇
  2012年   1908篇
  2011年   2334篇
  2010年   1613篇
  2009年   1706篇
  2008年   1503篇
  2007年   1905篇
  2006年   1758篇
  2005年   1457篇
  2004年   1368篇
  2003年   1104篇
  2002年   932篇
  2001年   861篇
  2000年   723篇
  1999年   596篇
  1998年   540篇
  1997年   422篇
  1996年   374篇
  1995年   343篇
  1994年   310篇
  1993年   256篇
  1992年   173篇
  1991年   126篇
  1990年   84篇
  1989年   83篇
  1988年   52篇
  1987年   34篇
  1986年   15篇
  1985年   14篇
  1984年   19篇
  1983年   11篇
  1982年   12篇
  1981年   7篇
  1980年   8篇
  1979年   7篇
  1975年   3篇
  1963年   3篇
  1959年   5篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Chemical durability of lanthanide zirconates (A2Zr2O7) (A = La-Yb) under near-field environments is important for evaluating their application as potential nuclear waste forms. In this work, A2Zr2O7 (A = La-Yb) are synthesized by spark plasma sintering with controlled microstructure and their chemical durability are evaluated in a nitric acid solution (pH = 1). Scanning transmission electron microscopy analysis reveals an amorphous passivation film either enriched with Zr or lanthanide. The complex chemistry of the passivation films can be correlated with a transition in corrosion mechanisms from a preferential release of lanthanide in La2Zr2O7 to a preferential release of Zr in Er2Zr2O7 and Yb2Zr2O7. These results suggest a dominant mechanism of incongruent dissolution and surface reorganization for the formation of passivation films. Strong correlations are identified between the leaching rates and cation ionic size, ionic potential, electronegativity differences between A-site cation and Zr, and bonding valence sum of oxygen, suggesting important impacts of structural and bonding characteristics in controlling chemical durability of lanthanide zirconates.  相似文献   
2.
Herein, we report the photosensing property of CdS thin films. CdS thin films were coated onto glass substrates via a spray pyrolysis method using different spray pressures. Prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical and photoluminescence spectroscopy. XRD analysis demonstrated the growth of crystalline CdS films with crystallite sizes varying from 26 to 29 nm depending on the pressure. The SEM and EDAX analyses revealed nearly-stoichiometric CdS films with smooth surfaces and slight variation in grain morphology due to pressure changes. Optical measurements showed a direct bandgap varying from 2.37 eV to 2.42 eV due to pressure changes. A photodetector was also fabricated using the grown CdS films; the fabricated photodetector exhibited good performance depending on the spray pressure. A spray pressure of 1.5 GPa resulted in high photoresponsivity and external quantum efficiency.  相似文献   
3.
《Ceramics International》2021,47(18):25863-25874
The inherent brittleness of bioceramics restricts their applications in load-bearing implant, although they possess good biocompatibility and bioactivity. ZnO, MgO and 58S bioglass (BG) were incorporated as additives to further improve the mechanical properties and biocompatibility of β-TCP and ZnO/MgO/BG-β-TCP composite scaffolds were manufactured via digital light processing (DLP). The composite with the best comprehensive performance was selected for degradation behavior and biocompatibility evaluation. The effects of different proportions of ZnO/MgO/BG on mechanical strength were analyzed and ZnO0·5/MgO1/BG2-β-TCP (ZMBT) samples exhibited superior mechanical strength. The improvement by 272% and 99% respectively was achieved in fracture toughness and compressive strength with the optimal recipe. The enhancement effect is realized through phase transition, alterative sliding actions and transgranular fracture to effectively prevent the load transfer combining the functions of bioglass and metal oxide. ZMBT scaffolds exhibited a more desirable pH environment and an enhanced ability of apatite-mineralization formation, meanwhile Si4+, Mg2+ and Zn2+ were gradually released from scaffolds. Furthermore, in vitro evaluation indicated that ZMBT scaffolds presented not only excellent cell attachment, proliferation, alkaline phosphatase (ALP) activity, but they up-regulated osteogenic gene (ALP, OCN, Runx2). These results suggest that the addition of ZnO/MgO/BG to DLP-printed β-TCP scaffolds offer a smart strategy to fabricate porous scaffolds with conspicuously better biological and physicochemical properties including compressive strength, bioactivity, osteogenesis and osteogenesis-related gene expression. Metal-oxide and BG synergistically enhanced the mechanical and biological properties which make the ZMBT scaffolds a strong candidate for bone repair applications.  相似文献   
4.
The corrosion behaviour of Mg-6Gd-3Y-1Zn-0.3Ag (wt.%) alloy components with different sizes after cooling was investigated. The alloys in the small components (SC) cooled fast, which were composed of α-Mg matrix and coarse long-period stacking ordered (LPSO) phases. The alloys in the large components (LC) cooled slowly, and there were thin lamellar LPSO phases precipitating inside the grains, except for α-Mg matrix and coarse LPSO phases. The hydrogen evolution test revealed that the corrosion rate of LC sample was higher than that of SC sample. Electrochemical impedance spectroscopy (EIS) test showed that the surface film on LC alloys provided worse protection. The corrosion morphologies indicated that the precipitation of the thin lamellar LPSO phases in LC sample caused severe micro-galvanic corrosion, which accelerated the rupture of the surface film.  相似文献   
5.
三维异质异构集成技术是实现电子信息系统向着微型化、高效能、高整合、低功耗及低成本方向发展的最重要方法,也是决定信息化平台中微电子和微纳系统领域未来发展的一项核心高技术。文章详细介绍了毫米波频段三维异质异构集成技术的优势、近年来的发展趋势以及面临的挑战。利用硅基MEMS 光敏复合薄膜多层布线工艺可实现异质芯片的低损耗互连,同时三维集成高性能封装滤波器、高辐射效率封装天线等无源元件,还能很好地处理布线间的电磁兼容和芯片间的屏蔽问题。最后介绍了一款新型毫米波三维异质异构集成雷达及其在远距离生命体征探测方面的应用。  相似文献   
6.
Magnetron sputtered low-loading iridium-ruthenium thin films are investigated as catalysts for the Oxygen Evolution Reaction at the anode of the Proton Exchange Membrane Water Electrolyzer. Electrochemical performance of 50 nm thin catalysts (Ir pure, Ir–Ru 1:1, Ir–Ru 1:3, Ru pure) is tested in a Rotating Disk Electrode. Corresponding Tafel slopes are measured before and after the CV-based procedure to compare the activity and stability of prepared compounds. Calculated activities prior to the procedure confirm higher activity of ruthenium-containing catalysts (Ru pure > Ir–Ru 1:3 > Ir–Ru 1:1 > Ir pure). However, after the procedure a higher activity and less degradation of Ir–Ru 1:3 is observed, compared to Ir–Ru 1:1, i.e. the sample with a higher amount of unstable ruthenium performs better. This contradicts the expected behavior of the catalyst. The comprehensive chemical and structural analysis unravels that the stability of Ir–Ru 1:3 sample is connected to RuO2 chemical state and hcp structure. Obtained results are confirmed by measuring current densities in a single cell.  相似文献   
7.
《Ceramics International》2022,48(7):9164-9171
The light-trapping structure is an effective method to increase solar light capture efficiency in the solar cells. In this study, Al-doped ZnO (AZO)/polystyrene (PS)/AZO tri-layer transparent conductive film with light-trapping structure was fabricated by magnetron sputtering and liquid phase methods. The structural, optical and electrical properties of the AZO films could be controlled by different growth conditions. When the sputtering pressure of the under-layer AZO film was 0.2 Pa, the discharge voltage was around 80 V, which was within the optimal process window for obtaining AZO film with high crystallinity. The optimal under-layer AZO film had a large surface roughness and a very low static water contact angle of 75.71°, promoting the relatively uniform distribution of PS spheres. Under this sputtering condition, the prepared AZO/PS/AZO tri-layer film had the highest crystallinity and least point defects. The highest carrier concentration and Hall mobility are 3.0 × 1021 cm-3and 5.39 cm2 V-1 s-1, respectively. Additionally, a transparent conductive film with the lowest resistivity value (3.88 × 10-4 Ω cm) and the highest average haze value (26.5%) was obtained by optimizing the process parameters. These properties were comparable to or exceed the reported values of surface-textured SnO2-based as well as ZnO-based TCOs films, making our films suitable for transparent electrode applications, especially in thin-film solar cells.  相似文献   
8.
《Ceramics International》2022,48(14):20000-20009
Zinc oxide (ZnO) offers a major disadvantage of asymmetry doping in terms of reliability, stability, and reproducibility of p-type doping, which is the main hindrance in realization of optoelectronic devices. The problem is even more complicated due to formation of various native defects in unintentionally doped n-type ZnO. The realization of p-type conductivity in doped ZnO requires an in-depth understanding of the formation of an effective shallow acceptor, as well as donor-acceptor compensation. Photophysical properties such as photoconductivity along with photoluminescence (PL) studies have unprecedentedly and effectively been utilized in this work to monitor the evolution of various in-gap defects. Phosphorus (P) doped ZnO thin films have been grown by RF magnetron sputtering under various Ar to O2 gas ratios to investigate the effect of O2 on the donor-acceptor compensation by comprehensive photoconductivity measurements supported by the PL studies. Initial elemental analyses indicate presence of abundant zinc vacancies (VZn) in O-rich ambience. The results predict that P sits in the zinc (Zn) site rather than the oxygen (O) site causing the formation of PZn–2VZn acceptor-like defects, which compensates the donor defects in P doped ZnO films. Photocurrent spectra uniquely reveal presence of more oxygen vacancies (VO) defects states in lower O2 flow, which gets compensated with an increase in the O2 flow. Successive photocurrent transients indicate probable presence of more VO in the films grown with lower O2 flow and more VZn in higher O2 flow. Overall the photosensitivity measurements clearly present that O-rich ambience expedites the formation of acceptor defects which are compensated, thereby lowering the dark current and enhancing the ultraviolet photosensitivity.  相似文献   
9.
10.
《Ceramics International》2022,48(21):31111-31120
The current work reports a comparison between the structural and optical attributes of PZT (52/48) powder and thin film prepared via solid-state reaction and sol-gel spin-coating technique, respectively. The two obtained PZT samples, PZT-I corresponding to powder which was calcined at 875°C for 2 h, and PZT-II corresponding to a thin film which was annealed at 650°C for 2 h, were investigated via X-Ray Diffraction, Raman Spectroscopy, UV–Vis Spectroscopy, and SEM analysis. The diffraction spectra suggested the creation of a polycrystalline perovskite structure in both the samples. The optical band gap was evaluated using Tauc's relation. The bandgap values were found to be 3.2 eV for PZT-I and 3.87 eV for PZT-II. The bandgap values are significantly different for the PZT materials prepared by the two different methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号