首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12532篇
  免费   1682篇
  国内免费   756篇
电工技术   5114篇
综合类   743篇
化学工业   1383篇
金属工艺   1144篇
机械仪表   595篇
建筑科学   281篇
矿业工程   181篇
能源动力   659篇
轻工业   133篇
水利工程   104篇
石油天然气   483篇
武器工业   93篇
无线电   1729篇
一般工业技术   1030篇
冶金工业   223篇
原子能技术   101篇
自动化技术   974篇
  2024年   34篇
  2023年   202篇
  2022年   302篇
  2021年   368篇
  2020年   464篇
  2019年   386篇
  2018年   342篇
  2017年   480篇
  2016年   473篇
  2015年   510篇
  2014年   680篇
  2013年   633篇
  2012年   920篇
  2011年   1133篇
  2010年   824篇
  2009年   825篇
  2008年   792篇
  2007年   959篇
  2006年   838篇
  2005年   630篇
  2004年   596篇
  2003年   460篇
  2002年   409篇
  2001年   320篇
  2000年   306篇
  1999年   245篇
  1998年   170篇
  1997年   144篇
  1996年   109篇
  1995年   109篇
  1994年   73篇
  1993年   62篇
  1992年   56篇
  1991年   41篇
  1990年   20篇
  1989年   18篇
  1988年   15篇
  1987年   9篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
2.
3.
In this communication, the structural, micro-structural, dielectric, electrical, magnetic, and leakage-current characteristics of a double perovskite (Y2CoMnO6) ceramic material have been reported. The material was synthesized via a high-temperature mixed-oxide route. The compound crystallizes in a monoclinic structure which is confirmed from preliminary X-ray structural study. The morphological study by using scanning electron micrograph reveals the almost homogeneous distribution of grains throughout the surface of the sample. The nature of frequency-dependence of dielectric constant has been described by the Maxwell-Wagner model. The occurrence of a dielectric anomaly in the temperature dependence of dielectric permittivity study demonstrates the ferroelectric-paraelectric phase transition in the material. From the Nyquist plots, we found the existence of both grain and grain boundary effects. The frequency dependence of conductivity was studied by the Jonscher’s Power law, and the conduction phenomenon obeys the large overlapping polaron tunneling model. By using the Arrhenius equation, the activation energy has been calculated which is nearly equal to the energy required for the hoping of the electron. Both impedance and conductivity analysis demonstrate that the sample exhibits negative temperature coefficient of resistance (NTCR) properties indicating the semiconducting type of material at high temperatures. The anti-ferromagnetic character of the material is observed from the nature of magnetic hysteresis loop. The leakage current analysis suggests that the conduction process in the material follows the space charge limited conduction phenomenon. Such material will be helpful for modern electronic devices and spintronic applications.  相似文献   
4.
《Ceramics International》2021,47(22):31920-31926
The Sr and Ba bearing Tl-1212 phase, Tl(Ba,Sr)CaCu2O7 is an interesting superconductor. The Sr only bearing TlSr2CaCu2O7 is not easily prepared in the superconducting form. The Ba only bearing TlBa2CaCu2O7 on the other hand does not show improvement in the transition temperature with elemental substitution. In this work the influence of multivalent Se (non-metal) and Te (metalloid) substitutions at the Tl-site of Tl1-xMx(Ba,Sr)CaCu2O7 (M = Se or Te) superconductors for x = 0–0.6 was studied. The samples were prepared via the conventional solid-state reaction method. XRD patterns showed a single Tl-1212 phase for x = 0 and 0.1 Se substituted samples. The critical current density at the peak temperature, Tp of the imaginary (χ”) part of the AC susceptibility (χ = χ’ +χ”), Jc-inter(Tp) for all samples was between 15 and 21 A cm−2. The highest superconducting transition temperature was shown by the x = 0.3 Se-substituted sample (Tc-onset = 104 K, Tc-zero = 89 K, Tcχ’ = 104 K and Tp = 80 K). Te suppressed the superconductivity of Tl-1212 phase. The order of highest transition temperatures are as follows: Tl1-xTex(Ba,Sr)CaCu2O7<Tl(Ba,Sr)CaCu2O7<Tl1-xSex(Ba,Sr)CaCu2O7. This work showed that Se was better than Te in improving the transition temperature and flux pinning of the Tl-1212 phase. The roles of ionic radius of Se and Te on the superconductivity of Tl(Ba,Sr)CaCu2O7 are discussed in this paper.  相似文献   
5.
在80 MHz~1 GHz频段,单个功率管输出功率能达到100 W以上,为研制输出功率400 W的功率放大器,文中设计了四路功率合成器。该合成器需要实现功率容量大、工作频带宽、体积小的设计目标。在功率容量方面,文中采用悬置带状线结构,其功率容量远远大于微带线结构;在工作频带方面,采用切比雪夫九节阻抗变换器,将工作带宽拓宽为80 MHz~1 GHz;在体积方面,文中合成器的功率合成部分采用Y型节级联实现四路功率合成,阻抗变换部分采用切比雪夫阻抗变换器进行阻抗变换,该结构相较于磁环巴伦功率合成器,不但具有损耗小、平坦度高的优点,而且通过将阻抗变换器设计成曲折的形状,进一步缩小了合成器体积。仿真与实测结果显示该合成器在80 MHz~1 GHz范围内还具有较高的平坦度,合成效率可达90%以上。  相似文献   
6.
A few compositions of the system Sr2Mn1-xSnxO4 (x = 0.0, 0.3, 0.5) were synthesized in the air by the solid-state ceramic route. A change in the sign (positive to negative) of the permittivity above a particular temperature (TC) is observed at all the measured frequencies. The negative permittivity was analyzed by the Drude-Lorentz model. It was found that negative permittivity is caused by the plasma oscillations of thermally excited free charge carriers. Analysis of XPS spectra confirmed the presence of mixed-valence states of both Mn (Mn4+ and Mn3+) and Sn (Sn4+ and Sn2+) ions. The UV–vis.-IR spectroscopy results indicated generation of a large number of defect states in the forbidden bandgap region of Sr2MnO4 on the substitution of Sn at Mn site. Synthesized samples are promising metamaterials for radio frequency (10 Hz -2 MHz) region applications due to the high-temperature plasmonic behavior.  相似文献   
7.
This paper presents part of the work ComEd and Quanta Technology have performed to quantify the locational and temporal value of DER to avoid distribution grid upgrade investments. It focuses on the formulation of a robust and efficient algorithm for DER optimal dispatch on a distribution feeder to mitigate the violation of current and voltage limits using the allocated cost of capacity and locational marginal value of real and reactive DER injection/withdrawal.  相似文献   
8.
《Ceramics International》2019,45(10):13127-13137
Production of high performance low-energy loss solid oxide fuel cells (SOFCs) is a challenge and is the global demand of the current market. We have focused on to develop SOFCs that can be operated at 600–800 °C with better ionic conductivity when compared to the conventional SOFCs functioning at 1000–800 °C. Bulk cerium oxide (CeO2)-based solid electrolyte lessens ionic conductivity at room temperature, thus nanocrystalline CeO2 has been used to improve the conductivity and to control the temperature. The transition metal-doped CeO2 (Ce(1−X)Cr(X)O2) nanocrystalline is used to increases the deficiency of oxygen molecules which in turn enhances ionic conductivity in electrolyte material for SOFC applications. The structural and morphological characterization have been done using XRD, RAMAN and FESEM, while electrical and magnetic characterization at room temperature was analysed using vibrating sample magnetometer, impedance spectroscopy and cyclic voltammetery shows better ionic conductivity in Cr doped CeO2 in comparison with pure nanocrystalline CeO2.  相似文献   
9.
《Ceramics International》2019,45(14):17137-17143
The (K0.90Li0.10) (Nb0.80Ta0.20)0.99Mn0.01O3 (KLTN) ceramic has been synthesized by the conventional solid-state reaction route. The Rietveld refinement X-Ray diffraction (XRD) patterns confirmed the single-phase orthorhombic crystal structure with space group Amm2. The frequency dependent electrical properties were examined by the complex dielectric and impedance spectroscopy in the temperature range 30 °C–500 °C where multiple structural phase transition was observed with high dielectric constant, low tangent loss and well saturated electric polarization. The shifting of the ferroelectric phase transition temperature by 30 °C in heating and cooling mode suggests the irreversible motion of the domains and domain walls and significant effects on grain boundaries on structural phase transition temperature. A series of phase transitions from orthorhombic to tetragonal (∼190 °C) and tetragonal to Cubic (∼390 °C in cooling and 420 °C in heating) have been obtained in the wide range of temperature. The different type of analogy such as Modulus formalism, complex impedance spectra, frequency dependent conductivity, the activation energy of charge carriers has been used to understand the microstructure-electrical properties relation.  相似文献   
10.
《Ceramics International》2022,48(15):21856-21867
In this work, ZnO nanowires with high aspect ratio were obtained by fast and simple electrochemical anodization. Morphological, structural and photoelectrochemical characteristics of the synthesized ZnO nanowires were evaluated by using different techniques: field emission scanning electron microscopy, atomic force microscopy, high resolution transmission electron microscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–VIS spectroscopy, Mott-Schottky analysis and photoelectrochemical impedance spectroscopy. The synthesized ZnO nanowires presented high roughness and high crystallinity. Besides, surface defects were identified in the sample. The value of the donor density (ND) was in the order of 1019 cm?3 in the dark and 1020 cm?3 under illumination. In addition, the ZnO nanowires presented good photosensibility, with a photocurrent density response 85 times higher than a ZnO compact layer, and lower resistance to charge transfer. The charge transfer processes taking place at the ZnO/electrolyte interface were studied, since these processes strongly influence the photoelectrocatalytic efficiency of the material. According to the results, the charge transfer of holes in the synthesized ZnO nanowires occurs indirectly via surface states. In this regard, surface states may be an important feature for photoelectrocatalytic applications since they could provide lower onset voltages and higher anodic current densities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号