首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9319篇
  免费   515篇
  国内免费   709篇
电工技术   442篇
综合类   411篇
化学工业   1275篇
金属工艺   3392篇
机械仪表   310篇
建筑科学   29篇
矿业工程   171篇
能源动力   822篇
轻工业   45篇
水利工程   3篇
石油天然气   172篇
武器工业   93篇
无线电   429篇
一般工业技术   1664篇
冶金工业   1099篇
原子能技术   97篇
自动化技术   89篇
  2024年   10篇
  2023年   175篇
  2022年   232篇
  2021年   284篇
  2020年   335篇
  2019年   271篇
  2018年   246篇
  2017年   265篇
  2016年   221篇
  2015年   271篇
  2014年   403篇
  2013年   448篇
  2012年   480篇
  2011年   623篇
  2010年   454篇
  2009年   542篇
  2008年   470篇
  2007年   590篇
  2006年   571篇
  2005年   463篇
  2004年   424篇
  2003年   410篇
  2002年   437篇
  2001年   340篇
  2000年   331篇
  1999年   294篇
  1998年   182篇
  1997年   201篇
  1996年   135篇
  1995年   106篇
  1994年   101篇
  1993年   71篇
  1992年   42篇
  1991年   29篇
  1990年   33篇
  1989年   16篇
  1988年   15篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
《Ceramics International》2022,48(7):9124-9133
The main obstacles in lithium-ion battery are limited by rate performance and the rapid capacity fading of LiNi0.8Co0.1Mn0.1O2 (NCM811). Herein, a novel three-dimensional (3D) hierarchical coating material has been fabricated by in situ growing carbon nanotubes (CNTs) on the surfaces of Ni–Al double oxide (Ni–Al-LDO) sheets (named as LDO&CNT) with Ni–Al double hydroxide (Ni–Al-LDH) as both the substrate and catalyst precursor. The resultant LDO&CNT nanocomposites are uniformly coated on the surfaces of NCM811 by the physical mixing method. The rate capability of the resultant cathode material retains to 78.80% at a current rate of 3C. Its capacity retention increases by 6.7–14.42% compared with pristine NCM811 after 100 cycles within a potential range of 2.75–4.3 V at 0.5C. The improved rate capability and cycle performance of NCM811 are assigned to the synergistic effects between Ni–Al-LDO and CNTs. The hierarchical LDO&CNT nanocomposites coating on the surface of NCM811 avoids the aggregation of conductive CNTs and the stacking of Ni–Al-LDO nanosheets. Furthermore, it accelerates Li+ and electrons shuttle and reduces the reaction of Li2O with H2O and CO2 in air, which results in Li2CO3 and LiOH alkali formation on the NCM811 surface.  相似文献   
2.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
3.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
4.
《Ceramics International》2022,48(12):16944-16955
Herein, the influence of the impact angle and Ni content on the wear behavior of Mo2NiB2–Ni cermets was studied using an erodent-carrying slurry comprising artificial seawater and SiO2 sands. The results reveal that the material loss may be attributed to the wear damage caused by SiO2 sands because cermets are expected to exhibit good corrosion resistance in artificial seawater. The relative density of cermets markedly influences their resistance to wear damage, and the material loss experienced by cermets with poor relative density is 2–4 times higher than that of cermets with good relative density; this occurs because a higher relative density can markedly enhance the mechanical properties and reduce the defects in the cermets. Moreover, the results indicate that as the impact angle increases from 0° to 60°, the manifestation of the wear mechanism changes from damaging the Ni binder phase (caused by single cutting wear) to damaging both the Mo2NiB2 ceramic and Ni binder phases due to the combination of cutting wear and impact wear. The wear damage is dominated by the cutting wear and impact wear from SiO2 sand at the low and high impact angles, respectively. Furthermore, the severe deterioration of the single ceramic skeleton at high impact angles indicates that the synergistic influence of the Mo2NiB2 ceramic and Ni binder phases on enhancing the wear resistance of the cermets intensifies at high impact angles.  相似文献   
5.
以FeS和CuSn8Ni1粉末为原料,利用机械合金化技术和粉末冶金技术制备了FeS/Cu复合材料,探讨了不同载荷情况下所制备的FeS/Cu复合材料的摩擦学性能及润滑膜与转移膜特征。结果表明:机械合金化提高了FeS与铜合金基体界面结合性能,进而提高了材料减摩耐磨性能;当载荷较小时,摩擦副表面接触不稳定,复合转移膜不连续,摩擦因数波动大;载荷较大时,复合转移膜易破损,材料的减摩耐磨性能变差;当载荷为150 N时,载荷适宜,材料表面软化,复合转移膜更加完整,摩擦因数较小。  相似文献   
6.
A novel low-temperature sealing method was developed to seal solid oxide fuel cells. The 3D Ni nanosheet array was pre-fabricated on faying surfaces of Crofer22APU interconnect and NiO-YSZ anode-support. Then it was covered with Au film without changing its morphology. This special nanostructure improved sintering efficiency between Ag nanoparticles and substrates. A dense joint was obtained at the low-temperature between 250 °C–300 °C. This method effectively avoided the oxidation of interconnect during sealing. When joints were sealed at 300 °C, the shear strength reached 16 MPa. The fracture was mainly located in the central Ag layer, presenting a significant plastic deformation. Due to the effective protection of Ni layer, joints also possessed excellent oxidation resistance in oxidizing atmosphere at 800 °C for 400 h. After high-temperature oxidation, the shear strength was increased to 23 MPa, revealing an increasement of 43.8% compared with the as-sealed condition (16 MPa). This sealing method has great potential in sealing solid oxide fuel cells. It also can be extended to seal other energy-conversion devices.  相似文献   
7.
In view to finding a better electrode for water electrolysis-the hydrogen and oxygen evolution efficiencies of a Pd-80 at% Ni electrode along with its surface oxidation-reduction characteristics were investigated in alkaline medium using cyclic voltammetry. On cycling the electrode in between the potential range of ?1.0 to +0.65 V, two oxidation and two reduction transformations were observed. The origins of the transformations were found out. Most of the transformation peak potentials were found to be different than that of Pd and Ni electrodes. The generation of (PdNi)(III) species over the electrode surface identified to be the crucial for the oxygen evolution and continuous cycling up to 100 min succeeded to obtain its saturated layer. Tafel plots for both the hydrogen and oxygen evolution reactions (HER and OER) showed two regions. The kinetic parameters for the HER and OER, i.e., exchange current density at zero overpotential (io) and slope (b) values for both the low and high overpotential (η) regions were found out. For the HER, the io and b values are found to be 6.17 × 10?2 and 4.36 mA/cm2 and 137.0 and 343.9 mV/dec, respectively. For the OER, the values are 2.83 × 10?3 and 2.35 mA/cm2 and 72.8 and 215.1 mV/dec, respectively. On comparing these kinetic values with that available for Pd, Ni and Pd-50 at% Ni, it is realized that the investigated Pd-80 at% Ni electrode showed better electrolysis efficiencies than that of its component materials and Pd-50 at% Ni electrode.  相似文献   
8.
Exploration of multifunctional non-precious metal catalysts towards oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is very important for many clean energy technologies. Here, two trifunctional catalysts based on M (Co, Ni), N and S tridoped carbon nanoplates (Co/N/S-CNPs and Ni/N/S-CNPs) are reported. Due to the relatively higher catalytic site content, graphitization degree and smaller charge-transfer resistance, the Co/N/S-CNPs catalyst shows higher activity and stability for ORR (onset potential of 0.99 V and half-wave potential of 0.87 V vs. RHE (reversible hydrogen electrode)), OER (overpotential at 10 mA cm?2 of 0.37 V) and HER than the Ni/N/S-CNPs catalyst. Furthermore, when constructed with the Co/N/S-CNPs and commercial 20 wt% Pt/C + Ir/C cathodes, respectively, Zn-air battery (ZnAB) based on the Co/N/S-CNPs cathode displays better performance, including a higher power density of 96.0 mW cm?2 and cycling stability at 5 mA cm?2. In addition, an alkaline electrolyzer assembled with the Co/N/S-CNPs catalyst as a bifunctional catalyst can reach 10 mA cm?2 at 1.65 V for overall water splitting and maintain excellent stability even after cycling for 12 h. The present work proves the potential of the Co/N/S-CNPs catalyst for many clean energy devices.  相似文献   
9.
The methane dry reforming (DRM) simultaneously converts the two greenhouse gases and produces syngas (CO + H2), which is being significant for both environmental and industrial consideration. Employing well-defined crystal oxides as precursors can produce Ni-based DRM catalysts with good sintering and coking resistance by enhancing the metal-support interactions. Adding basic promoters also is considered as an effective way to improve the coking resistance of DRM catalysts, although challenge remains in the control over the structure, morphology and interaction of the promoter in the catalyst. To well combine the two methods together for better catalytic performance, in this work a Ni/MgO-SiO2 catalyst was synthesized through a facile one-pot hydrothermal process, during which Ni-phyllosilicate formed as the precursor of Ni particles and MgO promoter was generated in form of Mg-phyllosilicate. This Ni/MgO-SiO2 had a hierarchical hollow sphere structure with large surface area (477.4 m2/g). Both the Ni particles (avg. 6.0 nm) and MgO promoter uniformly distributed. This hollow hierarchical catalyst performed high activity, thermal stability and coking resistance for catalytic dry reforming of methane.  相似文献   
10.
The ordered mesoporous Ni/KIT-6 (KIT-6, an ordered mesoporous SiO2) catalysts were prepared by impregnation method for carbon dioxide reforming of methane. The physicochemical properties of the prepared catalysts were characterized by H2-TPR, XRD, BET, and TEM. The research results show that the specific surface area, pore diameter, crystal size of Ni species, and catalytic performance of the Ni/KIT-6 catalysts are obviously affected by the Ni content. Increasing Ni content results in the increment of the crystal size of Ni species, while the dispersion of Ni species shows the opposite trend. The specific surface area and pore size of the Ni/KIT-6 catalyst with the Ni loading of 3 wt% were 493.3 m2 g?1 and 6.22 nm, respectively. Besides, the Ni species are highly dispersed on the surface of KIT-6 support. Thereby, it exhibits the superior catalytic performance of carbon dioxide reforming of methane to syngas (CO and H2). At atmospheric pressure, the CO2 and CH4 conversions for each catalyst following the order: NK3 ≈ NK4 > NK5 > NK2 > NK1 > bulk Ni. When the reaction temperature is 600 °C, the conversions of CH4 and CO2 of the NK3 catalyst are 65.1% and 37.0%, respectively. Meanwhile, it also shows excellent stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号