首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11055篇
  免费   471篇
  国内免费   614篇
电工技术   101篇
综合类   449篇
化学工业   935篇
金属工艺   4935篇
机械仪表   317篇
建筑科学   32篇
矿业工程   112篇
能源动力   454篇
轻工业   13篇
水利工程   1篇
石油天然气   14篇
武器工业   75篇
无线电   290篇
一般工业技术   3302篇
冶金工业   812篇
原子能技术   149篇
自动化技术   149篇
  2024年   10篇
  2023年   219篇
  2022年   188篇
  2021年   375篇
  2020年   355篇
  2019年   346篇
  2018年   287篇
  2017年   322篇
  2016年   232篇
  2015年   249篇
  2014年   434篇
  2013年   766篇
  2012年   489篇
  2011年   960篇
  2010年   547篇
  2009年   695篇
  2008年   618篇
  2007年   622篇
  2006年   627篇
  2005年   505篇
  2004年   500篇
  2003年   448篇
  2002年   300篇
  2001年   259篇
  2000年   248篇
  1999年   230篇
  1998年   177篇
  1997年   206篇
  1996年   128篇
  1995年   139篇
  1994年   111篇
  1993年   89篇
  1992年   79篇
  1991年   57篇
  1990年   51篇
  1989年   44篇
  1988年   23篇
  1987年   28篇
  1986年   28篇
  1985年   16篇
  1984年   22篇
  1983年   17篇
  1982年   21篇
  1981年   15篇
  1980年   14篇
  1979年   9篇
  1978年   14篇
  1977年   5篇
  1976年   7篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
高熵形状记忆合金是在等原子比NiTi合金的基础上,结合高熵合金的概念,逐渐发展起来的一种新型高温形状记忆合金。近年来,已开发出了综合性能优异的(TiZrHf)50(NiCoCu)50系和(TiZrHf)50(NiCuPd)50系高熵形状记忆合金,引起了广泛的关注和研究兴趣。本文从物相组成、微观组织、马氏体相变行为、形状记忆效应和超弹性等角度出发,综述了高熵形状记忆合金的研究进展,并对高熵形状记忆合金未来的研究重点进行了展望。  相似文献   
2.
In order to determine the effect of heat treatment on the mechanical and wear properties of Zn–40Al– 2Cu–2Si alloy, different heat treatments including homogenization followed by air-cooling (H1), homogenization followed by furnace-cooling (H2), stabilization (T5) and quench–aging (T6 and T7) were applied. The effects of these heat treatments on the mechanical and tribological properties of the alloy were studied by metallography and, mechanical and wear tests in comparison with SAE 65 bronze. The wear tests were performed using a block on cylinder type test apparatus. The hardness, tensile strength and compressive strength of the alloy increase by the application of H1 and T6 heat treatments, and all the heat treatments except T6, increase its elongation to fracture. H1, T5 and T6 heat treatments cause a reduction in friction coefficient and wear volume of the alloy. However, this alloy exhibits the lowest friction coefficient and wear volume after T6 heat treatment. Therefore, T6 heat treatment appears to be the best process for the lubricated tribological applications of this alloy at a pressure of 14 MPa. However, Zn–40Al–2Cu–2Si alloy in the as-cast and heat-treated conditions shows lower wear loss or higher wear resistance than the bronze.  相似文献   
3.
High-entropy alloys (HEAs) are composed of multiple principal elements and exhibit not only remarkable mechanical properties,but also promising potentials for developing numerous new compositions.To fully realize such potentials,high-throughput preparation and characterization technologies are especially useful;thereby,the fast evaluations of mechanical properties will be urgently required.Revealing the relation between strength and hardness is of significance for quickly predicting the strength of materials through simple hardness testing.However,up to now the strength-hardness relation for HEAs is still a puzzle.In this work,the relations between tensile or compressive strength and Vickers hardness of vari-ous HEAs with hundreds of compositions at room temperature are investigated,and finally,the solution for estimating the strengths of HEAs from their hardness values is achieved.Data for hundreds of different HEAs were extracted from stud-ies reported in the period from 2010 to 2020.The results suggested that the well-known three-time relation (i.e.,hardness equals to three times the magnitude of strength) works for nearly all HEAs,except for a few brittle HEAs which show quite high hardness but low strength due to early fracture.However,for HEAs with different phase structures,different strengths should be applied in using the 3-time relation,i.e.,yield strength for low ductility body-centered cubic (BCC) HEAs and ultimate strength for highly plastic and work-hardenable face-centered cubic (FCC) HEAs.As for dual-phase or multi-phase HEAs,similar 3-time relations can be also found.The present approach sheds light on the mechanisms of hardness and also provides useful guidelines for quick estimation of strength from hardness for various HEAs.  相似文献   
4.
Laser aided additive manufacturing(LAAM)was used to fabricate bulk Fe49.5Mn30Co10Cr10C0.5 interstitial multicomponent alloy using pre-alloyed powder.The room temperature yield strength(σy),ultimate tensile strength(σUTS)and elongation(εUST)were 645 MPa,917 MPa and 27.0%respectively.The as-built sample consisted of equiaxed and dendritic cellular structures formed by elemental segregation.These cellular structures together with oxide particle inclusions were deemed to strengthen the material.The other contributing components include dislocation strengthening,friction stress and grain bound-ary strengthening.The high εUTS was attributed to dislocation motion and activation of both twinning and transformation-induced plasticity(TWIP and TRIP).Tensile tests performed at-40℃and-130℃demonstrated superior tensile strength of 1041 MPa and 1267 MPa respectively.However,almost no twinning was observed in the fractured sample tested at-40℃and-130℃.Instead,higher fraction of strain-induced hexagonal close-packed(HCP)ε phase transformation of 21.2%were observed for fractured sample tested at-40℃,compared with 6.3%in fractured room temperature sample.  相似文献   
5.
通过熔化极气体保护焊技术制备了Fe-C-Mo-V堆焊合金磨损试样,基于滚动三体磨粒环境下进行了干砂橡胶轮磨损试验,利用扫描电子显微镜、能谱分析、维氏硬度计等显微分析和性能测试方法,对Fe-C-Mo-V堆焊合金熔敷金属的磨损失重和磨痕形貌进行检测与表征,研究了不同法向载荷条件下该熔敷金属的磨损行为变化规律。结果表明:随法向载荷的增加,磨损失重逐渐增加,但增幅逐渐变缓;磨损机制主要为磨粒对奥氏体基体的切削及VC硬质相和层片状合金碳化物的破碎剥落;磨损后表面硬度随法向载荷的增大逐渐增加,磨痕亚表面产生显著的加工硬化,奥氏体基体转变为马氏体组织,材料的硬度增强,使得熔敷金属在高载荷下表现出较好的耐磨性。  相似文献   
6.
The mechanical properties of complex concentrated alloys (CCAs) depend on their formed phases and corresponding microstructures.The data-driven prediction of the phase formation and associated mechanical properties is essential to discovering novel CCAs.The present work collects 557 samples of various chemical compositions,comprising 61 amorphous,167 single-phase crystalline,and 329 multi-phases crystalline CCAs.Three classification models are developed with high accuracies to category and understand the formed phases of CCAs.Also,two regression models are constructed to predict the hard-ness and ultimate tensile strength of CCAs,and the correlation coefficient of the random forest regression model is greater than 0.9 for both of two targeted properties.Furthermore,the Shapley additive expla-nation (SHAP) values are calculated,and accordingly four most important features are identified.A significant finding in the SHAP values is that there exists a critical value in each of the top four fea-tures,which provides an easy and fast assessment in the design of improved mechanical properties of CCAs.The present work demonstrates the great potential of machine learning in the design of advanced CCAs.  相似文献   
7.
对Nb?Si基超高温合金在900℃下的氧化和热腐蚀行为进行研究。结果表明:合金的氧化和热腐蚀动力学均由初始的抛物线增长阶段和随后的线性快速增长阶段组成。在氧化的初始阶段(1~50 h),合金表面形成较薄且连续的氧化膜,而在随后的线性阶段,合金表面发生严重的“粉化”现象。合金经热腐蚀后,其线性增长阶段发生得更早,同时在热腐蚀20~100 h后发生灾难性的氧化膜剥落现象,表明熔盐(Na2SO4和NaCl)能显著加快合金的氧化过程。STEM结果显示,热腐蚀后的氧化膜主要由TiO2、Nb2O5、TiNb2O7、非晶硅酸盐和NaNbO3组成。  相似文献   
8.
Grain refinement is critical for fabricating high-quality Al-Si casting components in the application of automobile and aerospace industries,while the well-known Si-poisoning effect makes it difficult.Nbbased refiners offer an effective method to refine Al-Si casting alloys,but their anti Si-poisoning capability is far from being understood.In this work,the grain refining mechanism and the anti Si-poisoning effect in the Al-10 Si/Al-5 Nb-B system were systematically investigated by combining transmission electron microscope,first-principles calculations,and thermodynamic calculations.It is revealed that NbB2provides the main nucleation site in the Al-10 Si ingot inoculated by 0.1 wt.%Nb Al-5 Nb-B refiner.The exposed Nb atoms on the(0001)NbB2and(1-100)NbB2surface can be substituted by Al to form(Al,Nb)B2intermedia layers.In addition,a layer of NbAl3-like compound(NbAl3')can cover the surface of NbB2with the orientation relation of(1-100)[11-20]NbB2//(110)[110]NbAl3'.Both of the(Al,Nb)B2and NbAl3'intermedia layers contribute to enhancing the nucleation potency of NbB2particles.These discoveries provide fundamental insight to the grain refining mechanism of the Nb-B based refiners for Al-Si casting alloys and are expected to guide the future development of stronger refiners for Al-Si casting alloys.  相似文献   
9.
The evolution of strain hardening behavior of the Fe_(50)(CoCrMnNi)_(50) medium-entropy alloy as a function of the fraction of recrystallized microstructure and the grain size was studied using the Hollomon and Ludwigson equations.The specimens under study were partially recrystallized,fully recrystallized with ultrafine-grained microstructure,and fully recrystallized with coarse grains.The yield strength decreases steadily as the fraction of recry stallized micro structure and grain size increases due to the recovery process and the Hall-Petch effect.Interestingly,the bimodal grain distribution was found to have a significant impact on strain hardening during plastic deformation.For instance,the highest ultimate tensile strength was exhibited by a 0.97 μm specimen,which was observed to contain a bimodal grain distribution.Furthermore,using the Ludwigson equation,the effect of the bimodal grain distribution was established from the behavior of K_2 and n1 curves.These curves tend to show very high values in the specimens with a bimodal grain distribution compared to those that show a homogenous grain distribution.Additionally,the bimodal grain distribution contributes to the extensive L(u|")ders strain observed in the 0.97 μm specimen,which induces a significant deviation of the Hollomon equation at lower strains.  相似文献   
10.
Generally, the good combination of pre-deformation and aging can improve the mechanical strength of the Al–Cu–Li–Mg alloys. However, the effects of pre-deformation on competitive precipitation relationship and precipitation strengthening have not been clarified in detail in Al–Cu–Li–Mg alloys with high Mg. In the present study, the effects of pre-deformation level on the microstructure and mechanical properties of an Al–2.95 Cu–1.55 Li–0.57 Mg–0.18 Zr alloy have been investigated. It is found that the introduction of dislocation by 5% pre-deformation can facilitate the precipitation of new successive composite precipitates and T _1 precipitates along the sub-grain boundaries or dislocations and inhibit the precipitation of dispersive GPB zones which is the main precipitates of the alloys without pre-deformation. The introduction of 5% pre-deformation can enhance the mechanical properties considerably. When the pre-deformation level increases from 5 to 15%, the number density of the successive composite precipitates and T _1 precipitates increases, and the aspect ratio of T _1 precipitates decreases. The decrease in T _1 precipitate aspect ratio and the increment of the successive composite precipitates result in the reduction in precipitation strengthening. Therefore, the increase in pre-deformation level from 5 to 15% does not further improve the mechanical properties of the alloys, although the dislocation strengthening increases continuously.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号