首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18389篇
  免费   2442篇
  国内免费   1064篇
电工技术   433篇
综合类   1495篇
化学工业   3081篇
金属工艺   338篇
机械仪表   751篇
建筑科学   769篇
矿业工程   125篇
能源动力   143篇
轻工业   4238篇
水利工程   49篇
石油天然气   283篇
武器工业   82篇
无线电   3063篇
一般工业技术   2946篇
冶金工业   341篇
原子能技术   39篇
自动化技术   3719篇
  2024年   60篇
  2023年   457篇
  2022年   515篇
  2021年   802篇
  2020年   842篇
  2019年   736篇
  2018年   613篇
  2017年   720篇
  2016年   690篇
  2015年   790篇
  2014年   1166篇
  2013年   1134篇
  2012年   1353篇
  2011年   1423篇
  2010年   1215篇
  2009年   1165篇
  2008年   1022篇
  2007年   1340篇
  2006年   1148篇
  2005年   991篇
  2004年   756篇
  2003年   604篇
  2002年   481篇
  2001年   377篇
  2000年   304篇
  1999年   224篇
  1998年   174篇
  1997年   133篇
  1996年   129篇
  1995年   127篇
  1994年   105篇
  1993年   80篇
  1992年   60篇
  1991年   35篇
  1990年   21篇
  1989年   19篇
  1988年   9篇
  1987年   5篇
  1986年   6篇
  1985年   11篇
  1984年   5篇
  1982年   3篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1964年   4篇
  1963年   3篇
  1962年   3篇
  1959年   3篇
  1955年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Various products, including foods and pharmaceuticals, are sensitive to temperature fluctuations. Thus, temperature monitoring during production, transportation, and storage is critical. Facile indicators are required to monitor temperature conditions via color changes in real time. This study aimed to prepare and apply thiol-functionalized covalent organic frameworks (COFs) as a novel indicator for monitoring thermal history and temperature abuse. The COFs underwent obvious color changes from bright yellow to purple after exposure to different temperatures for varying durations. The reaction kinetics are analyzed under isothermal conditions, which reveal that the order of reaction rates is k−20°C < k4°C < k20°C < k35°C < k55°C. The activation energy (Ea) of the COFs is calculated using the Arrhenius equation as 50.71 kJ moL−1. The COFs are capable of sensitive color changes and offer a broad temperature tracking range, thereby demonstrating their application potential for the monitoring of temperature and time exposure history during production, transportation, and storage. This excellent performance thermal history indicator also shows promise for expanding the application field of COFs.  相似文献   
2.
Tissue engineering requires the precise positioning of mammalian cells and biomaterials on substrate surfaces or in preprocessed scaffolds. Although the development of 2D and 3D bioprinting technologies has made substantial progress in recent years, precise, cell-friendly, easy to use, and fast technologies for selecting and positioning mammalian cells with single cell precision are still in need. A new laser-based bioprinting approach is therefore presented, which allows the selection of individual cells from complex cell mixtures based on morphology or fluorescence and their transfer onto a 2D target substrate or a preprocessed 3D scaffold with single cell precision and high cell viability (93–99% cell survival, depending on cell type and substrate). In addition to precise cell positioning, this approach can also be used for the generation of 3D structures by transferring and depositing multiple hydrogel droplets. By further automating and combining this approach with other 3D printing technologies, such as two-photon stereolithography, it has a high potential of becoming a fast and versatile technology for the 2D and 3D bioprinting of mammalian cells with single cell resolution.  相似文献   
3.
《Ceramics International》2022,48(20):30282-30293
Ceramic cores are an important component in the preparation of hollow turbine blades for aero-engines. Compared with traditional hot injection technology, 3D printing technology overcomes the disadvantages of a long production cycle and the difficulty in producing highly complex ceramic cores. The ceramic cores of hollow turbine blades require a high bending strength at high temperatures, and nano-mineralizers greatly improve their strength. In this study, nano-silica-reinforced alumina-based ceramic cores were prepared, and the effects of nanopowder content on the microstructure and properties of the ceramic cores were investigated. Alumina-based ceramic cores contained with nano-silica were prepared using the vat photopolymerization 3D printing technique and sintered at 1500 °C. The results showed that the linear shrinkage of ceramic cores first increased and then decreased as the nano-silica powder content increased, and the bending strength showed the same trend. The fracture mode changed from intergranular to transgranular. The open porosity and bulk density fluctuated slightly. The weight loss rate was approximately 20%. When the nano-silica content was 3%, the bending strength reached a maximum of 46.2 MPa and 26.1 MPa at 25 °C and 1500 °C, respectively. The precipitation of the glass phase, change in the fracture mode of the material, pinning crack of nanoparticles, and reduction of fracture energy due to the interlocking of cracks, were the main reasons for material strengthening. The successful preparation of 3D printed nano-silica reinforced alumina-based ceramic cores is expected to promote the preparation of high-performance ceramic cores with complex structures of hollow turbine blades.  相似文献   
4.
5.
针对光谱反射率研究中因训练样本数据量大造成的冗杂等问题,提出了一种基于RGB信息进行聚类的样本分类方法。首先对颜色进行聚类并确定聚类个数,后对每一类光谱反射率使用BP神经网络分别进行重建。对于实验结果,使用ΔE00、均方根误差(RMSE)以及适应度系数等标准进行评价,同时与主成分分析算法进行对比。从实验分析可得出,在聚类数目为7时光谱反射率重建效果最好,这时的平均CIE2000的色差为0.836,平均RMSE为0.0149,平均适应度系数为99.82%,并且,在最后对重建色差较大的色块进行了优化处理。实验证明,颜色聚类方法可以很好的应用于光谱反射率重建。  相似文献   
6.
At present, the development and implementation of digital transformation are the keys to promoting high-quality industry development. The new digital fabrication method of robotic 3D printing is a research area being studied by many to tackle the issue of the declining productivity of traditional construction methods. Although many studies have been done, most of the current 3D printing projects are facing limitations in terms of scale. In order to bridge the gap, this article proposed a mass customization 3D printing framework system for large-scale projects. This article discusses how mass customization is made possible through the joint operation of the FUROBOT software and 3D printing hardware. By taking the east gate of Nanjing Happy Valley Plaza as a case study, the article demonstrates and studies the feasibility of the large-scale mass customization 3D printing framework system.  相似文献   
7.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
8.
In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently, which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure (EWP). By means of a three-dimensional (3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system (TDS) widely used in China and its optimized drainage system (ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice, including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 kPa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.  相似文献   
9.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
10.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号