首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16093篇
  免费   1911篇
  国内免费   920篇
电工技术   418篇
综合类   1523篇
化学工业   3122篇
金属工艺   1475篇
机械仪表   854篇
建筑科学   2129篇
矿业工程   406篇
能源动力   534篇
轻工业   425篇
水利工程   221篇
石油天然气   225篇
武器工业   164篇
无线电   1962篇
一般工业技术   2160篇
冶金工业   463篇
原子能技术   52篇
自动化技术   2791篇
  2024年   31篇
  2023年   177篇
  2022年   381篇
  2021年   534篇
  2020年   548篇
  2019年   357篇
  2018年   389篇
  2017年   464篇
  2016年   528篇
  2015年   577篇
  2014年   910篇
  2013年   986篇
  2012年   1189篇
  2011年   1229篇
  2010年   979篇
  2009年   956篇
  2008年   1006篇
  2007年   1228篇
  2006年   1167篇
  2005年   989篇
  2004年   822篇
  2003年   672篇
  2002年   553篇
  2001年   479篇
  2000年   346篇
  1999年   317篇
  1998年   247篇
  1997年   215篇
  1996年   146篇
  1995年   123篇
  1994年   96篇
  1993年   53篇
  1992年   48篇
  1991年   39篇
  1990年   33篇
  1989年   27篇
  1988年   16篇
  1987年   8篇
  1986年   6篇
  1985年   7篇
  1984年   7篇
  1983年   8篇
  1982年   7篇
  1981年   3篇
  1980年   9篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1973年   2篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《工程爆破》2022,(2):76-78
在较为复杂的环境下,爆破拆除钢筋混凝土氧化铝储槽。该储槽自重大、呈圆形,内有4根立柱支撑下料漏斗。为使储槽顺利定向倒塌,通过爆破方案选择、参数确定,采取梯形切口和预处理以及安全防护和减振措施,使储槽爆破拆除获圆满成功。  相似文献   
2.
《Soils and Foundations》2022,62(1):101103
The present study proposes a new elasto-plastic constitutive model that considers different types of hydrates in pore spaces. Many triaxial compression tests on both methane hydrate-bearing soils and carbon dioxide hydrate-bearing soils have been carried out over the last few decades. It has been revealed that methane hydrate-bearing soils and carbon dioxide hydrate-bearing soils have different strength and dilatancy properties even though they have the same hydrate contents. The reason for this might be due to the different types of hydrate morphology. In this study, therefore, the effect of the hydrate morphology on the mechanical response of gas-hydrate-bearing sediments is investigated through a model analysis by taking into account the different hardening rules corresponding to each type of hydrate morphology. In order to evaluate the capability of the proposed model, it is applied to the results of past triaxial compression tests on both methane hydrate-containing and carbon dioxide hydrate-containing sand specimens. The model is found to successfully reproduce the different stress–strain relations and dilatancy behaviors, by only giving consideration to the different morphology distributions and not changing the fitting parameters. The model is then used to predict a possible range in which the maximum deviator stress can move for various hydrate morphology ratios; the range is defined as the strength-band. The predicted curve of the maximum deviator stress obtained by the constitutive model matches the empirical equations obtained from past experiments. It supports the fact that the hydrate morphology ratio changes with the total hydrate saturation. These findings will contribute to a better understanding of the relation between the microscopic structures and macro-mechanical behaviors of gas-hydrate-bearing sediments.  相似文献   
3.
《Soils and Foundations》2022,62(6):101224
Internal erosion is a major threat to hydraulic earth structures, such as river levees and dams. This paper focuses on suffusion and suffosion phenomena which are caused by the movement of fine particles in the granular skeleton due to seepage flow. The present study investigates the impact of internal erosion on the dynamic response under cyclic torsional shear and monotonic responses under triaxial compression and torsional simple shear. A series of experiments, using a gap-graded silica mixture with a fines content of 20%, is performed under loose, medium, and dense conditions using a novel erosion hollow cylindrical torsional shear apparatus. The erosion test results indicate that the critical hydraulic gradient and the rate of erosion are density-dependent, where a transition from suffosion to suffusion is observed as the seepage continues. Regardless of the sample density, variations in the radial strain and particle size distribution, along the specimen height after erosion, are no longer uniform. Furthermore, the dynamic shearing results show that the small-strain shear modulus increases, but the initial damping ratio decreases after internal erosion, probably due to the removal of free fines. In addition, the elastic threshold strain and reference shear strain values are found to be higher for the eroded and non-eroded specimens, respectively. Finally, based on drained monotonic loading, the post-erosion peak stress ratio increases remarkably under triaxial compression, while that under torsional simple shear depends on the relative density where the direction of loading is normal to the direction of seepage. These observations indicate that the horizontal bedding plane becomes weaker, while the vertical one becomes stronger after downward erosion.  相似文献   
4.
The freeze–thaw cycling damages the soil structure, and the shear performance of soil are degraded. A series of tests on lime–soil(L–S) and fiber–lime–soil(F–L–S), including freeze–thaw test, the triaxial compression test, nuclear magnetic resonance (NMR) test and scanning electron microscope (SEM) test, were completed. The test results showed that fiber reinforcement changed the stress–strain behavior and failure pattern of soil. The cohesion and internal friction angle of soil gradually decreased with the increase of freeze–thaw cycles (F–T cycles). The pore radius and porosity of soil increased, while the micro pore volume decreased, and the small pore volume, medium pore volume and large pore volume increased, and the large pore volume had a little variation after 10 F–T cycles. The number of pores of F–L–S was less than L–S, demonstrating that the addition of fiber helped to reduce the pore volume. The interweaved fibers limited the development and the connection of cracks. By means of the spatial restraint effect of fiber on the soil and the friction action between fiber and soil, the shear performances and freeze–thaw durability of F–L–S better were than that of L–S.  相似文献   
5.
In recent years, the light field (LF) as a new imaging modality has attracted wide interest. The large data volume of LF images poses great challenge to LF image coding, and the LF images captured by different devices show significant differences in angular domain. In this paper we propose a view prediction framework to handle LF image coding with various sampling density. All LF images are represented as view arrays. We first partition the views into reference view (RV) set and intermediate view (IV) set. The RVs are rearranged into a pseudo sequence and directly compressed by a video encoder. Other views are then predicted by the RVs. To exploit the four dimensional signal structure, we propose the linear approximation prior (LAP) to reveal the correlation among LF views and efficiently remove the LF data redundancy. Based on the LAP, a distortion minimization interpolation (DMI) method is used to predict IVs. To robustly handle the LF images with different sampling density, we propose an Iteratively Updating depth image based rendering (IU-DIBR) method to extend our DMI. Some auxiliary views are generated to cover the target region and then the DMI calculates reconstruction coefficients for the IVs. Different view partition patterns are also explored. Extensive experiments on different types LF images also valid the efficiency of the proposed method.  相似文献   
6.
When a laser beam induces surface tension gradient at the free surface of a liquid, a weak surface depression is expected and has been observed. Here we report giant depression and rupture in “optothermocapillary fluids” under the illumination of laser and sunlight. Computational fluid dynamics models were developed to understand the surface deformation and provided desirable physical parameters of the fluid for maximum deformation. New optothermocapillary fluids were created by mixing transparent lamp oil with different candle dyes. They can be cut open by sunlight and be patterned to different shapes and sizes using an ordinary laser show projector or a common laser pointer. Laser driving and elevation of optothermocapillary fluids, in addition to the manipulation of different droplets on their surface, were demonstrated as an efficient controlling method and platform for optofluidic operations. The fundamental understanding of light-induced giant depression and creation of new optothermocapillary fluids encourage the fundamental research and applications of optofluidics.  相似文献   
7.
从原料、中空成型机和吹塑工艺等方面介绍了我国中空吹塑行业发展现状,并对电子化学品专用超洁净桶、高压储氢四型瓶、全电动中空成型机、微发泡中空成型技术和挤吹聚对苯二甲酸乙二醇酯(PET)容器等在“十四五”期间的重点产品、工艺和设备发展方向进行了展望。  相似文献   
8.
《Ceramics International》2022,48(8):10420-10427
Precision glass molding (PGM) is a recently developed method to fabricate glass microgroove components. Lead glass is commonly used as an optical material due to its high refractive index and low transition temperature. A nickel-phosphorous (Ni–P) plated mold is traditionally employed in the PGM process for microstructures optics. However, leaded glass is subject to color change and can blacken during the PGM process, reducing the light transmittance of microgrooves. In this paper, an equation for the redox reaction between Ni and Pb is proposed, which is based on the diffusion of inner Ni atoms to the surface of the mold and the standard electrode potential of the Pb ions in leaded glass. A viscoelastic constitutive model of the glass is established to simulate the compression stress distribution during molding. Finally, the effects of molding pressure, molding temperature, and mold material on glass blackening are studied. The results show that the blackening of leaded glass is caused by Pb enriching the surface. The rise in molding stress and temperature increases the deformation of Ni–P plating, which promotes the diffusion of Ni atoms. By adding a titanium incorporated diamond-like carbon (Ti-DLC) coating, the deformation of the Ni–P plating during molding is suppressed, and the diffusion of Ni atoms can be prevented. In this way, the blackening of leaded glass can be prevented.  相似文献   
9.
Nowadays, growing environmental concerns have led many researchers to work in the area of natural fiber reinforced polymer composites. In this work, jute fiber has been used as reinforcement and epoxy as matrix material to develop partially biodegradable green composite with the help of hand layup followed by compression molding technique. The effect of curing temperature ranging from 80°C to 130°C on different samples was investigated for various mechanical properties. Results obtained from the various tests indicate that with increase in curing temperature, impact strength decreases, but tensile and flexural strength increases and decreases thereafter attaining the maximum value at 100°C between aforementioned temperature range. The trend obtained for mechanical properties is further justified through the study of morphology with scanning electron microscopy, and optimum curing temperature has been suggested.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号