首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36632篇
  免费   3765篇
  国内免费   1752篇
电工技术   4135篇
技术理论   2篇
综合类   2752篇
化学工业   1327篇
金属工艺   986篇
机械仪表   2728篇
建筑科学   8808篇
矿业工程   1389篇
能源动力   634篇
轻工业   609篇
水利工程   433篇
石油天然气   931篇
武器工业   643篇
无线电   5525篇
一般工业技术   1752篇
冶金工业   903篇
原子能技术   261篇
自动化技术   8331篇
  2024年   108篇
  2023年   598篇
  2022年   956篇
  2021年   1167篇
  2020年   1348篇
  2019年   935篇
  2018年   693篇
  2017年   867篇
  2016年   971篇
  2015年   1204篇
  2014年   2593篇
  2013年   1989篇
  2012年   2823篇
  2011年   2910篇
  2010年   2206篇
  2009年   2365篇
  2008年   2257篇
  2007年   2627篇
  2006年   2284篇
  2005年   2082篇
  2004年   1701篇
  2003年   1548篇
  2002年   1156篇
  2001年   981篇
  2000年   832篇
  1999年   653篇
  1998年   439篇
  1997年   331篇
  1996年   283篇
  1995年   254篇
  1994年   193篇
  1993年   146篇
  1992年   149篇
  1991年   115篇
  1990年   72篇
  1989年   67篇
  1988年   80篇
  1987年   27篇
  1986年   25篇
  1985年   35篇
  1984年   31篇
  1983年   13篇
  1982年   8篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1962年   2篇
  1959年   2篇
  1955年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Biomimetic Bouligand architecture is constructed in the ceramic to improve its toughness. Firstly, unidirectional carbon fiber-reinforced ZrB2-SiC ceramic films are achieved through a vacuum-assisted filtration method using graphene oxide. Then, ceramic films are helically assembled at a fixed angle of 30° in the graphite die based on the fiber orientation. Finally, the spark plasma sintering method was utilized to densify helical assembly carbon fiber/ceramic films. By constructing Bouligand structure, high fracture toughness (7.4 MPa·m0.5) and work of fracture (∼1055 J/m2) are achieved in ZrB2-based ceramic. The toughening mechanisms mainly are crack deflection, twisting and branching, carbon fiber pulling out, and bridging.  相似文献   
2.
《Ceramics International》2022,48(21):31491-31499
In this study, an all-solid-state electrochromic device (ECD) with the structure of ITO/WO3/Al2SiO5/NiOx/ITO was prepared, and the effect of the Al2SiO5 solid electrolyte thicknesses on the opto-electrical performance was investigated. The microstructure and surface morphology were characterized using XRD, SEM and AFM, and the surface morphology and degree of surface looseness demonstrate a significant influence on the opto-electrical properties of ECDs. The charge transfer dynamics at the solid-solid interface were characterized using EIS to obtain an ionic conductivity of 4.637 × 10-8 S/cm. CV, CA and UV–Visible spectra were employed to record the in situ electrochemical and optical properties. The results revealed that the highest optical modulation was 44.58%, the coloring and bleaching times were 14.8 s and 3.7 s, and the highest coloring efficiency was 98.17 cm2/C, which indicates that excellent opto-electrical properties were obtained. When the thickness increases, the degree of surface dense morphology transforms, and the loose morphology is more favorable for ion conductivity, which improves the opto-electrical properties. The results in this study provide insights into the understanding of Al3+-based all-solid-state ECDs, which promote the exploration of new types of Al3+ ionic conductors for all-solid-state ECDs.  相似文献   
3.
开发设计了一款新型尾气颗粒物过滤净化装置,该装置利用颗粒物惯性作用和水膜吸附效应实现颗粒物与柴油机尾气的分离。通过分析计算得到形成湿润壁面连续水膜的条件。选择合适的波形板面,搭建柴油机尾气颗粒物检测系统。试验结果表明,设计的柴油机尾气颗粒净化装置可以起到很好地净化颗粒物的作用,尤其是在柴油机刚刚启动低速运转的情况下净化效率高。  相似文献   
4.
吕冰  李荟冰 《聚氯乙烯》2021,49(3):39-40
介绍了采用变温吸附技术对氯乙烯进行干燥脱水的工艺流程及运行效果,阐述了变温吸附装置运行过程中出现的问题及相应的解决方法。  相似文献   
5.
In the past, thinking of carrying electronic devices inside our bodies was only posed by non-real scenarios. The emergence of insertable devices has changed this. Since this technology is still in its initial development stages, few studies have investigated factors that influence its acceptance. This paper analyzes the predictors of the intention to use non-medical insertable devices in two Latin American contexts. We used partial least squares structural equation modeling to examine whether six constructs predicted intention to use insertable devices. A questionnaire was administered to undergraduate students located in Colombia and Chile (n = 672). We also examined whether these predictors influenced intention differently for both of them. Four common constructs significantly and positively influenced both Chilean and Colombian respondents to use insertable devices (hedonic motivation, habit, performance expectancy, and social influence). Also, the habit has a complementary mediating effect on the relationship between social influence and behavioral intention. By contrast, effort expectations were a positive and significant predictor, but only among Chilean respondents. Findings suggest that when technologies are emerging, well-known predictors of intention (e.g., performance and effort expectations) are less influential than predictors related to self-efficacy (e.g., habit and hedonic motivation). The use of insertable devices has a significant impact on society. Thus, a better understanding of what motivates their use has implications for both academia and industry.  相似文献   
6.
The human brain is often likened to an incredibly complex and intricate computer, rather than electrical devices, consisting of billions of neuronal cells connected by synapses. Different brain circuits are responsible for coordinating and performing specific functions. The reward pathway of the synaptic plasticity in the brain is strongly related to the features of both drug addiction and relief. In the current study, a synaptic device based on layered hafnium disulfide (HfS2) is developed for the first time, to emulate the behavioral mechanisms of drug dosage modulation for neuroplasticity. A strong gate-dependent persistent photocurrent is observed, arising from the modulation of substrate-trapping events. By controlling the polarity of gate voltage, the basic functions of biological synapses are realized under a range of light spiking conditions. Furthermore, under the control of detrapping/trapping events at the HfS2/SiO2 interface, positive/negative correlations of the An/A1 index, which significantly reflected the weight change of synaptic plasticity, are realized under the same stimulation conditions for the emulation of the drug-related addition/relief behaviors in the brain. The findings provide a new advance for mimicking human brain plasticity.  相似文献   
7.
随着现代化进程的加快,电气设备接地装置的应用越来越广泛,从安全的角度考虑,其运行和维护受到了全社会的广泛关注,如何介绍应用当中存在的安全隐患成为当前关注的主要内容。本文系统概括的分析了电气设备接地装置的运行和维护情况,为其安全应用提供一定的参考。  相似文献   
8.
《Ceramics International》2022,48(17):25020-25033
Herein, we have developed a novel hybrid material based on NiCo2S4 (NCS), halloysite nanotubes (HNTs), and carbon as promising electrodes for supercapacitors (SCs). Firstly, mesoporous NCS nanoflakes were prepared by co-precipitation method followed by physically mixing with HNTs and carbon, and screen printed on nickel foam. After ultrasonication, a uniform distribution of the Carbon/HNTs complex was observed, which was confirmed by surface morphological analysis. When used as electrode material, the NCS/HNTs/C hybrid displayed a maximum specific capacity of 544 mAh g?1 at a scan rate of 5 mV s?1. Later, a solid-state hybrid SCs was fabricated using activated carbon (AC) as the negative and NCS/HNTs/C as the positive electrode (NCS/HNTs/C//AC). The device delivers a high energy density of 42.66 Wh kg?1 at a power density of 8.36 kW kg?1. In addition, the device demonstrates long-term cycling stability. Furthermore, the optimized NCS, NCS/HNTs, and NCS/HNTs/C nanocomposites also presented superior hydrogen evolution reaction (HER) performance of 201, 169, and 116 mV in the acidic bath at a current density of 10 mA cm?2, respectively. Thus, the synthesis of NCS/HNTs/C nanocomposite as positive electrodes for hybrid SCs opens new opportunities for the development of next-generation high energy density SCs.  相似文献   
9.
Preparation of three-dimensional (3D) networks has received significant attention as an effective approach for applications involving transport phenomena, such as thermal management materials, and several nanomaterials have been examined as potential building blocks of 3D networks for the improvement of heat conduction in polymer nanocomposites. For that purpose, nanocarbons such as graphene and graphite nanoplatelets have been spotlighted as suitable filler materials because of their excellent thermal conductivities (ca. 102–103 W·(m·K)?1 along their lateral axes) and morphological merits. However, the implications of morphological features such as the lateral length and thickness of graphene or graphene-like materials have not yet been identified. In this study, a controlled dissociation of bulk graphite to graphite nanosheets (GNSs) using a low-cost, ecofriendly bead mill process was extensively examined and, when configured in a 3D framework architecture formation, the size-controlled GNSs demonstrated that the thermal conductivities of a 3D interconnected framework of GNSs and the corresponding polymer nanocomposite were intimately correlated with the size of the GNSs, thus demonstrating the successful preparation of an efficient thermal management material without highly sophisticated efforts. The capability of controlling the lateral size and thickness of the GNSs as well as the use of a 3D interconnected framework architecture should greatly assist the commercialization of high-quality graphene-based thermal management materials in a scalable production process.  相似文献   
10.
王春杰  李骁  朱洪宇 《柴油机》2020,42(2):25-28
针对车客渡船动力负荷切换频繁,传统柴油机推进油耗高、排放和噪声大的问题,提出一种基于变速发电机组和超级电容储能装置的直流配网型混合动力系统。目前系统已成功应用于“江苏路渡3011”轮,实船运行数据显示:该混合动力系统不仅能达到较好的节油效果、降低排放,更在操控性、舒适性上优于传统的柴油机推进模式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号