首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5534篇
  免费   265篇
  国内免费   90篇
电工技术   18篇
综合类   237篇
化学工业   3905篇
金属工艺   37篇
机械仪表   25篇
建筑科学   57篇
矿业工程   8篇
能源动力   48篇
轻工业   160篇
水利工程   1篇
石油天然气   431篇
武器工业   10篇
无线电   87篇
一般工业技术   803篇
冶金工业   14篇
原子能技术   30篇
自动化技术   18篇
  2024年   10篇
  2023年   26篇
  2022年   53篇
  2021年   62篇
  2020年   68篇
  2019年   76篇
  2018年   71篇
  2017年   137篇
  2016年   114篇
  2015年   123篇
  2014年   231篇
  2013年   275篇
  2012年   312篇
  2011年   352篇
  2010年   317篇
  2009年   309篇
  2008年   291篇
  2007年   365篇
  2006年   345篇
  2005年   339篇
  2004年   287篇
  2003年   290篇
  2002年   263篇
  2001年   212篇
  2000年   142篇
  1999年   130篇
  1998年   101篇
  1997年   92篇
  1996年   75篇
  1995年   75篇
  1994年   63篇
  1993年   53篇
  1992年   62篇
  1991年   49篇
  1990年   26篇
  1989年   18篇
  1988年   9篇
  1987年   6篇
  1986年   6篇
  1985年   12篇
  1984年   12篇
  1983年   14篇
  1982年   16篇
排序方式: 共有5889条查询结果,搜索用时 15 毫秒
1.
The computational fluid dynamics (CFD) and kinetic-based moment methods coupled approach is adopted to simulate the bulk copolymerization of styrene–acrylonitrile (SAN) in a stirred tank reactor. Numerical simulations are carried out to investigate the impacts of impeller speed, monomer ratio, initiator ratio, and initial reaction temperature on the copolymerization process and product properties. Particularly, the Chaos theory is selected as a criterion for evaluating the occurrence of the thermal runaway. The Flory's and Stockmayer's distributions are employed to calculate chain length distribution and copolymer composition distribution of copolymer. The simulation results highlight that the appearance of thermal runaway can be postponed by properly increasing the rotation speed, decreasing the initiator loadings, initial acrylonitrile contents and initial reactor temperature. Furthermore, significant differences exist in the product properties that predicted by the ideal and non-ideal models, which demonstrates that the temperature heterogeneity plays a crucial role in SAN copolymerization. This study could offer references for the safe operation and design of polymerization processes.  相似文献   
2.
In this research, maleic anhydride-α-octadecene copolymer and its derivative with phenylethylamine was synthesized and its effect on the crystallization of paraffins was investigated. This derivative, when added into second cut of vacuum gas oil and forth cut of vacuum gas oil, increases the size and improves aggregation of paraffin crystals observed by polarizing light microscopy, increases onset temperature and enthalpy of paraffin crystallization determined by differential scanning calorimetry, improves the dewaxing efficiency with dosage of 100?ppm explored by MEK-toluene dewaxing.  相似文献   
3.
The effects of the structure of di- and triblock copolymers of poly(L-lysine) – LYS with poly(ethylene glycol) – PEG as well as the length of nonionic fragment in the LYS-PEG macromolecule on the copolymer chains conformation in the adsorption layer formed on the colloidal silica (SiO2) surface were examined. Spectrophotometry and turbidimetry were applied for the determination of copolymer adsorbed amounts and stability coefficients of silica aqueous suspensions. The electrokinetic parameters such as solid surface charge density and zeta potential were also estimated. The adsorption of LYS-PEG was proved to be the highest at pH 10 whereas the lowest adsorption on the solid surface was found for the triblock copolymer with long fragments of LYS at the same pH value.  相似文献   
4.
Sensors for monitoring temperature, heat flux, and thermal radiation are essential for applications such as electronic skin. While pyroelectric and thermoelectric effects are suitable candidates as functional elements in such devices, both concepts show individual drawbacks in terms of zero equilibrium signals for pyroelectric materials and small or slow response of thermoelectric materials. Here, these drawbacks are overcome by introducing the concept of thermodiffusion‐assisted pyroelectrics, which combines and enhances the performance of pyroelectric and ionic thermoelectric materials. The presented integrated concept provides both rapid initial response upon heating and stable synergistically enhanced signals upon prolonged exposure to heat stimuli. Likewise, incorporation of plasmonic metasurfaces enables the concept to provide both rapid and stable signals for radiation‐induced heating. The performance of the concept and its working mechanism can be explained by ion–electron interactions at the interface between the pyroelectric and ionic thermoelectric materials.  相似文献   
5.
The thin‐film morphology of stereoregular syndiotactic poly(p‐methylstyrene)–(cis‐1,4‐polybutadiene) (sP(pMS–B)) multiblock copolymers has been investigated using tapping mode atomic force microscopy with variation of the polymer composition and monomer block lengths. The morphology of the thin films ranges from isolated circular domains of sP(pMS) embedded into a matrix of polybutadiene (PB) to isolated domains of PB embedded into a matrix of sP(pMS), passing through bicontinuous (jagged) lamellae when the pMS concentration is in the range 20–67 mol%. Multiple folding of the polymer segments, i.e. where reciprocal inclusions of polymer segments to each other phase are able to generate greater domain, has been postulated and validated by considerations on the polymer architecture and the thermal and crystalline behaviour. © 2019 Society of Chemical Industry  相似文献   
6.
7.
We describe the synthesis, characterization and direct‐write 3D printing of triblock copolymer hydrogels that have a tunable response to temperature and shear stress. In aqueous solutions, these polymers utilize the temperature‐dependent self‐association of poly(alkyl glycidyl ether) ‘A’ blocks and a central poly(ethylene oxide) segment to create a physically crosslinked three‐dimensional network. The temperature response of these hydrogels was dependent upon composition, chain length and concentration of the ‘A’ block in the copolymer. Rheological experiments confirmed the existence of sol–gel transitions and the shear‐thinning behavior of the hydrogels. The temperature‐ and shear‐responsive properties enabled direct‐write 3D printing of complex objects with high fidelity. Hydrogel cytocompatibility was also confirmed by incorporating HeLa cells into select hydrogels resulting in high viabilities over 24 h. The tunable temperature response and innate shear‐thinning properties of these hydrogels, coupled with encouraging cell viability results, present an attractive opportunity for additive manufacturing and tissue engineering applications. © 2018 Society of Chemical Industry  相似文献   
8.
Membrane-based separation of organic molecules with 1–2 nm lateral dimensions is a demanding but rather underdeveloped technology. The major challenge is to fabricate membranes having distinct nanochannels with desired functionality. Here, a bottom-up strategy to produce such a membrane using a tailor-made triblock terpolymer featuring miscible end blocks with two different functional groups is demonstrated. A scalable multifunctional integral asymmetric isoporous membrane is fabricated by the solvent evaporation-induced self-assembly of the block copolymer combined with nonsolvent-induced phase separation. The membrane nanopores are readily functionalized using positively and negatively charged moieties by two straightforward gas–solid reactions. The pores of the post-functionalized membranes act as target-specific functional soft nanochannels due to swelling of the polyelectrolyte blocks in a hydrated state. The membranes show unprecedented separation selectivity of small molecules based on size and/or charge which demonstrates the potential of the proposed strategy to prepare next-generation nanofiltration membranes.  相似文献   
9.
Near infrared fluorescent galactose targeted glycopolymer containing m-carborane has been synthesized through ring open and atom transfer radical polymerization, followed by post-functionalization with a cyanine NIR dye. The copolymer could self-assemble into micelles which work as a potential agent for imaging-guided boron neutron capture therapy. The NIR micelles revealed no cytotoxicity for HepG2 cells. An enhanced and fast endocytosis due to the specific interaction between the HepG2 cells and the glycopolymer could be traced by fluorescence microscopy, and the bioimaging makes it possible to trace the nanoparticles and provides information where and when the neutron irradiation should be triggered.  相似文献   
10.
Interfacial hydrophobic/hydrophilic reaction fields significantly affect various reactions at the electrode surface. The hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR) have been investigated on single crystal Pt electrodes modified with hydrophobic/hydrophilic cations and anion-exchange copolymers in alkaline solutions. In alkali metal hydroxide solutions, Pt (110) exhibits the highest HER/HOR activity in the low-index planes of Pt. On the low-index planes of Pt, the hydrophilicity of the alkali metal cation in the supporting electrolyte activates the HER/HOR depending on its hydration energy. Hydrophilic cations at the interface facilitate the extraction of hydrogen from the hydrated water. The modification of anion-exchange copolymers with a hydrophobic skeleton on Pt (110) further enhanced the HER/HOR activity. The hydrogen bonding network formed around the hydrophobic species facilitated the mobility of water molecules and the OH as the reactant/product of the HER/HOR. Appropriately forming hydrophilic and hydrophobic reaction fields at the interface improved the HER/HOR activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号