排序方式: 共有148条查询结果,搜索用时 109 毫秒
1.
脊波理论:从脊波变换到Curvelet变换 总被引:23,自引:0,他引:23
本文旨较系统地评述继小波理论后,新近发展起来的具有变革意义的脊波理论的发展沿革、研究现状、应用前景和存在的问题。在信号处理、数据压缩、模式识别、统计估值等领域,获得对某些函数类的高的非线性逼近能力是至关重要的。由一维小波张成的二维小波虽然能有效表示含“点奇异”的二维函数,但对于含“线奇异”的二维函数,却不能获得最优的甚至哪怕是“近似最优”的非线性逼近阶。Candes提出的脊波变换巧妙地将二维函数中的“直线奇异”转化为“点奇异”,再用小波进行处理,能获得对含“直线奇异”的二维或高维函数最优的非线性逼近阶。正交脊波,则延续了脊波变换将“直线奇异”转化为“点奇异”进行处理的思想,并且构成一组L^2(R^2)上的标准正交基。单尺度脊波和Curvelet变换由脊波变换发展而来,分别利用了函数局部化和频带剖分的思想,将脊波理论发展到了一个更高的阶段,这两种变换都能“近似最优”的表示直线和曲线奇异,因而具有更好的应用前景。 相似文献
2.
共振解调是滚动轴承故障诊断中最常用的方法之一,然而其带通滤波器参数的选取通常比较困难.谱峭度法能根据峭度最大化原则自动确定带通滤波器参数,取得了一定的诊断效果,但由于滚动轴承的早期故障信号中含有强烈的背景噪声,诊断效果有时也不够明显.为此,提出一种基于EMD降噪和谱峭度法的滚动轴承早期故障诊断新方法,首先采用基于互相关系数和峭度准则的EMD降噪对采样信号进行预处理,突出高频共振成分,再利用谱峭度法选取最佳带通滤波器参数,最后使用带通滤波和包络解调进行故障诊断,并通过实际工程信号进行了验证. 相似文献
3.
基于小波去噪和EMD的信号瞬时参数提取 总被引:14,自引:1,他引:13
为了消除随机噪声对经验模式分解(EMD)质量的影响,提出利用小波去噪作为EMD的预处理,并结合希耳伯特变换提取信号瞬时参数的方法。研究了经验模式分解与希耳伯特变换相结合的提取信号瞬时参数的EMD/HS法,并针对随机噪声的影响,提出了基于阈值的正交小波变换去噪法。理论分析及仿真结果表明,该法克服了直接运用EMD分解中由于大量噪声带来的不必要的干扰,减少了EMD的分解层数以及累积边界效应对信号分析的影响,提高了瞬时参数提取的时效性和准确性。 相似文献
4.
超细粉碎与分级技术进展 总被引:12,自引:3,他引:9
结合作者的研究开发工作,从超细粉碎技术的应用、超细粉碎设备和超细分级技术的研究与开发3 个方面综合评述了该技术的现状。对比国外同行的水平,分析了国内相关技术和研究的特点,对超细粉碎分级技术今后的发展提出自己的观点 相似文献
5.
摘要:研究一种新的小波收缩阈值函数用于信号的去噪分析,对比分析了硬阈值、软阈值和新收缩阈值函数的优缺点,给出了收缩阈值函数法中的阈值计算详细过程,基于虚拟仪器LabVIEW构建检测齿轮箱系统的振动与噪音检测系统,在MATLAB平台上利用收缩阈值方法开发了对齿轮箱振动和噪声信号进行去噪处理的软件,试验数据的分析表明:基于新的小波阈值函数的信号降噪分析方法去噪效果明显,且保留了原始信号的细节特征,是一种较传统经典去噪手段更为优越的方法,具有较高的实用价值。
相似文献
相似文献
6.
全变分自适应图像去噪模型 总被引:11,自引:1,他引:10
通过分析三种主要变分去噪模型(调和、全变分以及广义全变分模型)的优缺点,提出了一种基于全变分的自适应图像去噪模型。该模型根据噪声图像的信噪比,采用高斯滤波器对图像进行预处理,克服了全变分模型引入的阶梯效应;利用图像中每一像素点的梯度信息,自适应选取去噪模型中决定扩散强弱的参数p(x,y),使接近边缘处平滑较弱,远离边缘处平滑较强。数值实验表明,本方法在去除噪声的同时保留了图像的细节信息,取得了很好的降噪性能,其峰值信噪比(PSNR)在高噪声水平下,较其他变分方法至少提高1.0dB左右。 相似文献
7.
8.
基于小波包的振动信号去噪应用与研究 总被引:7,自引:1,他引:6
小波包分析算法对上一层的低频部分和高频部分同时进行细分,具有更为精确的局部分析能力。基于小波包变换的优良时频分析特性,论述小波包分析的基本原理,研究小波包在振动检测信号消噪处理中的应用,给出应用小波包变换对基于MSP430F449单片机的信号采集电路所检测到的振动信号进行消噪处理的实例。结果表明小波包变换的方法可以降低系统噪声影响,通过变换分解出高频噪声部分,利用小波包收缩的阈值量化方法能够更好地去掉高频部分,从而达到有效去除信号中噪声的目的。 相似文献
9.
10.
小波分析在微弱信号测量中的应用研究 总被引:6,自引:0,他引:6
处理低信噪比的测量信号的关键是去除噪声,小波阈值消噪法是较为实用的一种处理方法。分析了Donoho的去噪阈值函数的优劣,基于sigmoid函数构造了一个新的阈值函数,该函数克服了硬阈值函数的分段性及软阈值函数的恒定偏差及导数不连续的弱点。对低信噪比的3种典型信号进行对比去噪仿真实验,结果表明该函数的去噪效果优于Donoho的阈值函数去噪以及传统的快速傅里叶变换去噪。 相似文献