首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19753篇
  免费   1669篇
  国内免费   462篇
电工技术   202篇
综合类   1116篇
化学工业   11584篇
金属工艺   378篇
机械仪表   212篇
建筑科学   383篇
矿业工程   172篇
能源动力   251篇
轻工业   793篇
水利工程   168篇
石油天然气   1197篇
武器工业   187篇
无线电   1649篇
一般工业技术   2845篇
冶金工业   204篇
原子能技术   236篇
自动化技术   307篇
  2024年   35篇
  2023年   192篇
  2022年   227篇
  2021年   381篇
  2020年   436篇
  2019年   391篇
  2018年   331篇
  2017年   517篇
  2016年   515篇
  2015年   623篇
  2014年   952篇
  2013年   1125篇
  2012年   1291篇
  2011年   1358篇
  2010年   1065篇
  2009年   1193篇
  2008年   1077篇
  2007年   1353篇
  2006年   1425篇
  2005年   1218篇
  2004年   1095篇
  2003年   939篇
  2002年   762篇
  2001年   623篇
  2000年   428篇
  1999年   397篇
  1998年   281篇
  1997年   244篇
  1996年   206篇
  1995年   212篇
  1994年   195篇
  1993年   193篇
  1992年   142篇
  1991年   103篇
  1990年   67篇
  1989年   75篇
  1988年   42篇
  1987年   23篇
  1986年   19篇
  1985年   28篇
  1984年   34篇
  1983年   22篇
  1982年   31篇
  1981年   4篇
  1980年   3篇
  1975年   2篇
  1959年   1篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Polyelectrolyte complex (PEC) membranes prepared from poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) were modified by crossflow polymerization of aniline (ANI). The PEC membranes were used as separators in a two-compartment setup where ANI monomer and ammonium persulfate (APS) oxidant diffused through the membranes to form polyaniline (PANI). APS and ANI having different distributions throughout the membranes, the reaction led to the asymmetric polymerization of PANI on one face of each PEC membrane thus producing Janus membranes. Due to the excess PANI content, the membrane displayed distinct asymmetric electrical conductivities on each face. Interestingly, very different ANI polymerizations were obtained when nonstoichiometric PEC membranes having different molar ratio of cationic and anionic polyelectrolytes (P+:P? represents PDADMAC:PSS) were used and transport of APS was fastest through the 2:1 PEC when compared to the 1:2 PEC. In all experiments, the polymerization was most intense on the ANI side of the membranes. Also, the influence of NaCl both during PEC fabrication and during polymerization was studied and found to have some effect on the solute permeability. Results showed that a higher content of PANI was formed on PEC membranes having excess P+ and with no NaCl added during PEC fabrication. Although X-ray diffraction confirmed the presence of PANI on both sides of each membrane, scanning electron microscopy images demonstrated that both sides of each membrane had different PANI content deposited. Electrical conductivity measurements using a four-point probe setup also showed that the PEC–PANI exhibits asymmetric electrical property on different sides. © 2021 Society of Industrial Chemistry.  相似文献   
2.
刘兆伦  隋艳茹  郭晓洁  云伟  刘子岳 《半导体光电》2022,43(2):347-352, 388
设计了一种基于阿基米德螺线的新型螺旋光子晶体光纤,该光纤以二氧化硅为基底材料,包层由24个螺旋臂组成,每个螺旋臂包含11个小空气孔,纤芯设有大空气孔,包层与纤芯中间的环形区域用于传输轨道角动量模式。该结构在1300~1800 nm波段上可支持22种轨道角动量模式稳定传输,在1550 nm波长下,有效折射率差最高可达2.89×10^(-3),色散系数最低可达66.4 ps/(nm·km),非线性系数最低可达2.17 W^(-1)·km^(-1),且1500~1600 nm波段上的色散值变化均小于15.15 ps/(nm·km)。此螺旋光子晶体光纤不仅结构简单,且具有低非线性、色散平坦的性能,为螺旋光子晶体光纤的设计提供了思路。  相似文献   
3.
Hydrogen produced from renewable resources is one of the cleanest fuels and could be used to store intermittent solar, wind and other energies. The main concern about using hydrogen is its hazards, such as high storage pressure, wide-range flammability, low mass density, and high diffusion. This study investigated the hazards of compressed hydrogen storage by developing a CFD model to understand the gas dispersion behaviour. The model was validated using the past experimental data and showed a good agreement, which could demonstrate the diffusion characteristics and gas stratification of a buoyant gas. A case study of an accidental release of compressed hydrogen from a storage tank was investigated to evaluate the risk of a hydrogen plant. A mathematical model of the jet spill was used to account for the choking effect from a high-pressure release to ensure the input velocity in CFD simulation is suitable for modelling gas dispersion using verified spatial and temporal scales, then the simulation results were used as inputs of vapour cloud explosions (VCEs) to investigate the potential overpressure effect. It was found the CFD model could predict a more reasonable flammable gas amount in cloud than using the bulk hydrogen release rate. The safety distance based on the overpressure prediction was reduced by 35%. The method proposed in this study can provide more validity for the consequence analysis as part of risk assessment.  相似文献   
4.
Customizing catalysts from the electronic structure, such as spin state, is an effective but challenging strategy for oxygen evolution reaction (OER). Herein, an ultrafine Co–Fe material highly dispersed on nitrogen carbide matrix is fabricated by coordination polymer and self-templating method to scrutinize the impact of spin state of Co on OER through Fe doping. The optimized catalyst shows boosted OER performance, which only requires overpotential of 333 mV at 10 mA cm?2, outperforming other control samples and commercial RuO2. The elevated local spin states of Co by Fe doping lead to charge transfer acceleration and fast generation of oxygenated intermediates, which is proved to account for the OER elevation. In addition, the long-term stability of Co–Fe material is guaranteed by the strong coordination of Co/Fe to the melamine-formaldehyde resin, which is used to adsorb metal ions, contributing to the high dispersion of active sites during the OER process.  相似文献   
5.
The design of polymer acceptors plays an essential role in the performance of all-polymer solar cells. Recently, the strategy of polymerized small molecules has achieved great success, but most polymers are synthesized from the mixed monomers, which seriously affects batch-to-batch reproducibility. Here, a method to separate γ-Br-IC or δ-Br-IC in gram scale and apply the strategy of monomer configurational control in which two isomeric polymeric acceptors (PBTIC-γ-2F2T and PBTIC-δ-2F2T) are produced is reported. As a comparison, PBTIC-m-2F2T from the mixed monomers is also synthesized. The γ-position based polymer (PBTIC-γ-2F2T) shows good solubility and achieves the best power conversion efficiency of 14.34% with a high open-circuit voltage of 0.95 V when blended with PM6, which is among the highest values recorded to date, while the δ-position based isomer (PBTIC-δ-2F2T) is insoluble and cannot be processed after parallel polymerization. The mixed-isomers based polymer, PBTIC-m-2F2T, shows better processing capability but has a low efficiency of 3.26%. Further investigation shows that precise control of configuration helps to improve the regularity of the polymer chain and reduce the π–π stacking distance. These results demonstrate that the configurational control affords a promising strategy to achieve high-performance polymer acceptors.  相似文献   
6.
《Ceramics International》2022,48(17):24859-24865
Ca3Co4O9+δ is a typical p-type thermoelectric oxide material with a low thermal conductivity. In this study, double-layered oxide samples Ca(Ba,Sr)3Co4O9+δ dispersed with different SiC contents were obtained via the traditional solid phase reaction method. The effects of different elemental substitutions and SiC dispersion contents on the microstructure and thermoelectric properties of the samples were studied. The double optimisation of partial substitution of Ca-site atoms and SiC dispersion considerably improved the thermoelectric properties of Ca3Co4O9+δ. Through the elemental substitution, the resistivity of the Ca3Co4O9+δ material was reduced. Conversely, introducing an appropriate amount of SiC nanoparticles enhanced phonon scattering and was crucial in reducing its thermal conductivity. After double optimisations, the dimensionless thermoelectric figure of merit (ZT) values of both Ca2.93Sr0.07Co4O9+δ + 0.1 wt% SiC and Ca2.9Ba0.1Co4O9+δ + 0.1 wt% SiC achieved an optimum value of 0.25 at 923 K.  相似文献   
7.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
8.
《Ceramics International》2022,48(16):23452-23459
In the family of inorganic nanomaterials, zirconia is a highly promising functional ceramic with a high refractive index, hardness, and dielectric constant, as well as excellent chemical inertness and thermal stability. These properties are enhanced in nano-zirconia ceramics, because nanopowders have a small particle size, good morphology, and uniform and dispersive distribution. In this study, a co-precipitation process was proposed to synthesise highly dispersed MgO–Y2O3 co-stabilized ZrO2 nanopowders. The effects of different calcination temperatures on the crystallisation degree and particle dispersion of zirconia nanopowders were characterised by X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption using the Brunauer–Emmett–Teller (BET) theory, transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The optimum synthesis conditions were obtained as follows: 6 h of high-energy planetary grinding and calcination at 800 °C in an electric furnace. Under these optimum conditions, the average particle size of the prepared powder was 28.7 nm. This process enriches the literature on the controllable preparation of Mg–Y/ZrO2 nanopowders obtained by the co-precipitation method.  相似文献   
9.
为提高聚苯胺导电层与基材之间的黏结牢度,以聚乙烯醇为共混高聚物,通过连续原位聚合法在对位芳纶纱线表面形成聚乙烯醇/聚苯胺导电层,制备得到芳纶/聚苯胺/聚乙烯醇复合导电纱。分析了导电纱的结构与性能,并研究了聚乙烯醇对聚苯胺导电层耐水洗和耐磨性的影响。结果表明:适量添加聚乙烯醇有助于提高导电纱导电层的结构规整性及电导率,随着聚乙烯醇质量分数的提高,导电纱的电导率呈先上升后下降的趋势,当聚乙烯醇占苯胺的质量分数为4.30%时,制得的复合导电纱线的电导率最高,达到(1.120±0.198) S/cm;聚乙烯醇的添加和质量分数的提高,有助于聚苯胺导电层耐水洗性及在较小外力作用下的耐磨性的提高。  相似文献   
10.
吕改芳  王萍  程静  孟柱  李莉  周学祥  李晓明 《聚氯乙烯》2020,48(1):11-13,22
采用卡尔费休法测定了液态氯乙烯单体中的水含量。试验确定了采样工具、样品的预处理方式及选用溶剂的最优方案,并进行了精密度与准确度的验证。结果表明卡尔费休法测定液态氯乙烯单体中的水含量准确、快速,可以用来准确、及时地指导生产。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号