首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1514篇
  免费   153篇
  国内免费   77篇
电工技术   23篇
综合类   92篇
化学工业   703篇
金属工艺   48篇
机械仪表   17篇
建筑科学   10篇
矿业工程   10篇
能源动力   28篇
轻工业   104篇
水利工程   1篇
石油天然气   49篇
武器工业   10篇
无线电   94篇
一般工业技术   500篇
冶金工业   13篇
原子能技术   19篇
自动化技术   23篇
  2024年   3篇
  2023年   44篇
  2022年   39篇
  2021年   54篇
  2020年   67篇
  2019年   61篇
  2018年   65篇
  2017年   58篇
  2016年   81篇
  2015年   97篇
  2014年   112篇
  2013年   133篇
  2012年   155篇
  2011年   141篇
  2010年   101篇
  2009年   104篇
  2008年   80篇
  2007年   97篇
  2006年   62篇
  2005年   45篇
  2004年   40篇
  2003年   20篇
  2002年   22篇
  2001年   14篇
  2000年   4篇
  1999年   9篇
  1998年   7篇
  1997年   6篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1951年   2篇
排序方式: 共有1744条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(16):23111-23118
Porous alumina microspheres have attracted significant attention owing to their high mechanical strength and excellent chemical and thermal stability. The emulsion method is considered as a simple and controllable method for the preparation of inorganic microspheres. However, preparing alumina microspheres with the emulsion method is challenging because the emulsification of the precursor is inhibited by the rapid hydrolysis of aluminum alkoxide. Herein, we report a new emulsion method for the preparation of high-porosity alumina microspheres using a combination of ionic and non-ionic surfactants; in this method, the compound surfactants act as a template agent to guide aluminum alkoxide to form a lamellar structure through self-assembly. The decomposition of the templating agent and transformation of the alumina crystal at a high temperature result in structural collapse and formation of lamellar pores. Compound surfactants increased the spheroidization rate of the emulsion from 47% to 63% after hydrolysis, whereas the particle size was decreased by almost half. Additionally, the morphology and porosity of the alumina microspheres were changed. With increasing anionic surfactant content, the porosity increased initially and then decreased. The porosity of the alumina microspheres reached a maximum value of 76% at the 1:1 mass ratio of the non-ionic to anionic surfactants. Heat treatment was found to change the size of lamellar pores, with the pore diameter reaching maximum value at 1300 °C. The compound surfactants also increased the compressive stress and specific surface area of the porous alumina microspheres.  相似文献   
2.
Drug which shows extensive first pass effect is difficult task that, needs to be solved by formulators in the pharmaceutical science. The low oral bioavailability (49%) of flutamide may be due to poor wettability, low aqueous solubility and extensive first pass effect. The aim of present investigation was to prepare flutamide loaded microspheres and incorporate it into suppositories for rectal delivery to avoid first pass effect and enhance residence time. Flutamide loaded mucoadhesive microspheres of Ocimum Basilicum mucilage (OBM) were prepared using spray drying and characterized by percent production yield, encapsulation efficiency, particle size, zeta potential, polydispersity index, DSC, SEM, XRPD, in vitro drug release and stability studies. Moreover, ex vivo mucoadhesion was investigated using falling liquid film technique to determine the adhesion of microspheres to sheep rectal mucosa. The microspheres had nearly spherical shape and size about 2.53?μm. The encapsulation efficiency and mucoadhesion of optimized formulation MBF10 were found to be 69.6?±?2.3% and 89.01?±?2.18%, respectively. Percent CDR of optimized flutamide loaded mucoadhesive microspheres was found to be 88.7?±?1.3 at 7?h. In conclusion, OBM microparticles based suppository could be used to deliver drug through rectal delivery.  相似文献   
3.
In order to improve the compatibility between the flame retardants of carbon microspheres coated by magnesium hydroxide (MH@CMSs) and the PET matrix and improve the spinnability of the masterbatch, MH@CMSs have been microencapsulated by PET to obtain microencapsulated carbon microspheres coated by magnesium hydroxide flame retardants – MMH@CMSs.Morphologies and structures of MMH@CMSs have been studied by scanning electron microscope (SEM), transmission electron microscopy (TEM), and FTIR, which showed that an organic shell layer of PET as capsule wall was coated on the surface of MH@CMSs. A series of MMH@CMSs/PET fibers with different MMH@CMSs contents were successfully prepared through the melt-spinning method. The morphology and structure of MMH@CMSs/PET fibers were characterized by SEM and FTIR. The flame retardancy of MMH@CMSs/PET fibers was determined via limiting oxygen index (LOI) test and cone calorimeter. Results showed that the MMH@CMSs/PET fibers possessed optimum flame retardancy when the MMH@CMSs content is 0.6 wt.%, at which the LOI reached a maximum of 25.8, and the pk-HRR, total heat release, and total smoke release were reduced by 27.4, 20, and 13.6%, compared with pure PET fibers, respectively. Moreover, the flame-retardant mechanism was studied by thermogravimetric analysis, thermogravimetric analysis-infrared spectrometry, and the SEM of the residue char, which disclosed that MMH@CMSs enhanced the thermal stability of PET fibers, and promoted PET fibers to form a dense and continuous protective char layer that effectively blocked heat transfer and combustible gas release.  相似文献   
4.
《Ceramics International》2022,48(8):10472-10479
Porous mullite ceramics are widely used in heat insulation owing to their high temperature and corrosion resistant properties. Reducing the thermal conductivity by increasing porosity, while ensuring a high compressive strength, is vital for the synthesis of high-strength and lightweight porous mullite ceramics. In this study, ceramic microspheres are initially prepared from pre-treated high-alumina fly ash by spray drying, and then used to successfully prepare porous mullite ceramics with enhanced compressive strength via a simple direct stacking and sintering approach. The influence of sintering temperature and time on the microstructure and properties of porous mullite ceramics was evaluated, and the corresponding formation mechanism was elucidated. Results show that the porous mullite ceramics, calcined at 1550 °C for 3 h, possess a porosity of 47%, compressive strength of 31.4 MPa, and thermal conductivity of 0.775 W/(m?K) (at 25 °C), similar to mullite ceramics prepared from pure raw materials. The uniform pore size distribution and sintered neck between the microspheres contribute to the high compressive strength of mullite ceramics, while maintaining high porosity.  相似文献   
5.
6.
With the growing therapeutic importance of cell microcarriers, there has been a rise in the need to develop technologies that facilitate efficient microencapsulation of cells, currently limited by a lack of straightforward and low‐cost strategies for single‐cell isolation and printing. Thus, the aim of this study is to develop a gentle and cell‐compatible electro‐hydrodynamic jet 3D printing technique to facilitate the efficient microencapsulation of cells in hydrogel microspheres, and investigate the effects of parameters (flow rate, voltage frequency, nozzle diameter, working distance, and substrate velocity) on the printing process. Stable microspheres are obtained by regulating these parameters to balance various forces, with control of their diameters in the range of 100–600 µm. The study demonstrates that under optimized conditions, the technique is able to successfully encapsulate cells within hydrogel microspheres with high viability over a wide range of diameters. This 3D printing technique expands the potential utility of microspheres into additional biological applications, such as cancer biology and drug screening. It can also be used as an effective platform for the production of tumor spheroids, generating multicellular spheroid models in vitro or for injectable cell delivery.  相似文献   
7.
8.
Chitosan microspheres containing bromocresol green, cresol red, and phenolphthalein for corrosion detection, through pH change, are synthesized in order to be used in protective coatings for aluminium alloys. Microspheres containing corrosion detection species are characterized morphologically (SEM) and physico‐chemically (FTIR, TGA). Release studies (UV–vis) are performed in corrosion‐promoting conditions (pH, NaCl), and detection studies by immersion in media associated with corrosion activity while microspheres' sensing activity is evaluated visually. Electrochemical characterization of AA2024 substrates in the presence of chitosan spheres is performed to understand material performance, and a color change is observed as a result of local pH increase in cathodic areas when corrosion takes place. These findings can be correlated with the results from release studies and seem a promising approach for corrosion sensing purposes, not only because pH increase is possible to detect due to corrosion, but also because chitosan is considered an environmentally friendly material.  相似文献   
9.
为提升光子晶体生色结构在纺织基材上的稳固性,以自交联型聚(苯乙烯-N-羟甲基丙烯酰胺)(P(St-NMA))胶体微球为结构基元,通过数码喷印技术将其施加到涤纶织物上构筑光子晶体生色结构。观测P(St-NMA)微球的形貌,表征光子晶体的排列和结构色效果,并测试和对比PSt和P(St-NMA)2种光子晶体生色结构在基材上的稳固性。结果表明:P(St-NMA)胶体微球具有典型的核壳结构,其中疏水性的聚苯乙烯(PSt)为核层,亲水性的聚N-羟甲基丙烯酰胺为壳层;P(St-NMA)光子晶体生色结构排列规整,色彩鲜艳、虹彩明显;相比PSt光子晶体生色结构,P(St-NMA)光子晶体生色结构的稳固性显著提升,经折叠、水洗后不易脱落。  相似文献   
10.
The development of intravital Förster Resonance Energy Transfer (FRET) is required to probe cellular and tissue function in the natural context: the living organism. Only in this way can biomedicine truly comprehend pathogenesis and develop effective therapeutic strategies. Here we demonstrate and discuss the advantages and pitfalls of two strategies to quantify FRET in vivo—ratiometrically and time-resolved by fluorescence lifetime imaging—and show their concrete application in the context of neuroinflammation in adult mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号