首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7890篇
  免费   375篇
  国内免费   122篇
电工技术   29篇
综合类   384篇
化学工业   5412篇
金属工艺   51篇
机械仪表   36篇
建筑科学   81篇
矿业工程   12篇
能源动力   52篇
轻工业   402篇
水利工程   1篇
石油天然气   536篇
武器工业   10篇
无线电   96篇
一般工业技术   1156篇
冶金工业   22篇
原子能技术   85篇
自动化技术   22篇
  2024年   10篇
  2023年   34篇
  2022年   64篇
  2021年   90篇
  2020年   97篇
  2019年   101篇
  2018年   88篇
  2017年   167篇
  2016年   156篇
  2015年   170篇
  2014年   279篇
  2013年   356篇
  2012年   465篇
  2011年   528篇
  2010年   446篇
  2009年   469篇
  2008年   427篇
  2007年   523篇
  2006年   560篇
  2005年   495篇
  2004年   437篇
  2003年   439篇
  2002年   379篇
  2001年   307篇
  2000年   185篇
  1999年   186篇
  1998年   139篇
  1997年   116篇
  1996年   104篇
  1995年   105篇
  1994年   96篇
  1993年   80篇
  1992年   74篇
  1991年   61篇
  1990年   41篇
  1989年   21篇
  1988年   14篇
  1987年   9篇
  1986年   8篇
  1985年   15篇
  1984年   15篇
  1983年   14篇
  1982年   16篇
  1951年   1篇
排序方式: 共有8387条查询结果,搜索用时 17 毫秒
1.
The computational fluid dynamics (CFD) and kinetic-based moment methods coupled approach is adopted to simulate the bulk copolymerization of styrene–acrylonitrile (SAN) in a stirred tank reactor. Numerical simulations are carried out to investigate the impacts of impeller speed, monomer ratio, initiator ratio, and initial reaction temperature on the copolymerization process and product properties. Particularly, the Chaos theory is selected as a criterion for evaluating the occurrence of the thermal runaway. The Flory's and Stockmayer's distributions are employed to calculate chain length distribution and copolymer composition distribution of copolymer. The simulation results highlight that the appearance of thermal runaway can be postponed by properly increasing the rotation speed, decreasing the initiator loadings, initial acrylonitrile contents and initial reactor temperature. Furthermore, significant differences exist in the product properties that predicted by the ideal and non-ideal models, which demonstrates that the temperature heterogeneity plays a crucial role in SAN copolymerization. This study could offer references for the safe operation and design of polymerization processes.  相似文献   
2.
In this research, maleic anhydride-α-octadecene copolymer and its derivative with phenylethylamine was synthesized and its effect on the crystallization of paraffins was investigated. This derivative, when added into second cut of vacuum gas oil and forth cut of vacuum gas oil, increases the size and improves aggregation of paraffin crystals observed by polarizing light microscopy, increases onset temperature and enthalpy of paraffin crystallization determined by differential scanning calorimetry, improves the dewaxing efficiency with dosage of 100?ppm explored by MEK-toluene dewaxing.  相似文献   
3.
The effects of the structure of di- and triblock copolymers of poly(L-lysine) – LYS with poly(ethylene glycol) – PEG as well as the length of nonionic fragment in the LYS-PEG macromolecule on the copolymer chains conformation in the adsorption layer formed on the colloidal silica (SiO2) surface were examined. Spectrophotometry and turbidimetry were applied for the determination of copolymer adsorbed amounts and stability coefficients of silica aqueous suspensions. The electrokinetic parameters such as solid surface charge density and zeta potential were also estimated. The adsorption of LYS-PEG was proved to be the highest at pH 10 whereas the lowest adsorption on the solid surface was found for the triblock copolymer with long fragments of LYS at the same pH value.  相似文献   
4.
Sensors for monitoring temperature, heat flux, and thermal radiation are essential for applications such as electronic skin. While pyroelectric and thermoelectric effects are suitable candidates as functional elements in such devices, both concepts show individual drawbacks in terms of zero equilibrium signals for pyroelectric materials and small or slow response of thermoelectric materials. Here, these drawbacks are overcome by introducing the concept of thermodiffusion‐assisted pyroelectrics, which combines and enhances the performance of pyroelectric and ionic thermoelectric materials. The presented integrated concept provides both rapid initial response upon heating and stable synergistically enhanced signals upon prolonged exposure to heat stimuli. Likewise, incorporation of plasmonic metasurfaces enables the concept to provide both rapid and stable signals for radiation‐induced heating. The performance of the concept and its working mechanism can be explained by ion–electron interactions at the interface between the pyroelectric and ionic thermoelectric materials.  相似文献   
5.
The thin‐film morphology of stereoregular syndiotactic poly(p‐methylstyrene)–(cis‐1,4‐polybutadiene) (sP(pMS–B)) multiblock copolymers has been investigated using tapping mode atomic force microscopy with variation of the polymer composition and monomer block lengths. The morphology of the thin films ranges from isolated circular domains of sP(pMS) embedded into a matrix of polybutadiene (PB) to isolated domains of PB embedded into a matrix of sP(pMS), passing through bicontinuous (jagged) lamellae when the pMS concentration is in the range 20–67 mol%. Multiple folding of the polymer segments, i.e. where reciprocal inclusions of polymer segments to each other phase are able to generate greater domain, has been postulated and validated by considerations on the polymer architecture and the thermal and crystalline behaviour. © 2019 Society of Chemical Industry  相似文献   
6.
7.
We describe the synthesis, characterization and direct‐write 3D printing of triblock copolymer hydrogels that have a tunable response to temperature and shear stress. In aqueous solutions, these polymers utilize the temperature‐dependent self‐association of poly(alkyl glycidyl ether) ‘A’ blocks and a central poly(ethylene oxide) segment to create a physically crosslinked three‐dimensional network. The temperature response of these hydrogels was dependent upon composition, chain length and concentration of the ‘A’ block in the copolymer. Rheological experiments confirmed the existence of sol–gel transitions and the shear‐thinning behavior of the hydrogels. The temperature‐ and shear‐responsive properties enabled direct‐write 3D printing of complex objects with high fidelity. Hydrogel cytocompatibility was also confirmed by incorporating HeLa cells into select hydrogels resulting in high viabilities over 24 h. The tunable temperature response and innate shear‐thinning properties of these hydrogels, coupled with encouraging cell viability results, present an attractive opportunity for additive manufacturing and tissue engineering applications. © 2018 Society of Chemical Industry  相似文献   
8.
Membrane-based separation of organic molecules with 1–2 nm lateral dimensions is a demanding but rather underdeveloped technology. The major challenge is to fabricate membranes having distinct nanochannels with desired functionality. Here, a bottom-up strategy to produce such a membrane using a tailor-made triblock terpolymer featuring miscible end blocks with two different functional groups is demonstrated. A scalable multifunctional integral asymmetric isoporous membrane is fabricated by the solvent evaporation-induced self-assembly of the block copolymer combined with nonsolvent-induced phase separation. The membrane nanopores are readily functionalized using positively and negatively charged moieties by two straightforward gas–solid reactions. The pores of the post-functionalized membranes act as target-specific functional soft nanochannels due to swelling of the polyelectrolyte blocks in a hydrated state. The membranes show unprecedented separation selectivity of small molecules based on size and/or charge which demonstrates the potential of the proposed strategy to prepare next-generation nanofiltration membranes.  相似文献   
9.
Near infrared fluorescent galactose targeted glycopolymer containing m-carborane has been synthesized through ring open and atom transfer radical polymerization, followed by post-functionalization with a cyanine NIR dye. The copolymer could self-assemble into micelles which work as a potential agent for imaging-guided boron neutron capture therapy. The NIR micelles revealed no cytotoxicity for HepG2 cells. An enhanced and fast endocytosis due to the specific interaction between the HepG2 cells and the glycopolymer could be traced by fluorescence microscopy, and the bioimaging makes it possible to trace the nanoparticles and provides information where and when the neutron irradiation should be triggered.  相似文献   
10.
Three polymers with excellent absorption properties were synthesized by graft polymerization: soluble starch-g-poly(acrylic acid-co-2-hydroxyethyl methacrylate), poly(vinyl alcohol)/potato starch-g-poly(acrylic acid-co-acrylamide), poly(vinyl alcohol)/potato starch-g-poly(acrylic acid-co-acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid). Ammonium persulfate and potassium persulfate were used as initiators, while N,N′-methylenebisacrylamide was used as the crosslinking agent. The molecular structure of potato and soluble starch grafted by synthetic polymers was characterized by means of Fourier Transform Infrared Spectroscopy (FTIR). The morphology of the resulting materials was studied using a scanning electron microscope (SEM). Thermal stability was tested by thermogravimetric measurements. The absorption properties of the obtained biopolymers were tested in deionized water, sodium chroma solutions of various concentrations and in buffer solutions of various pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号