首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3358篇
  免费   562篇
  国内免费   43篇
电工技术   6篇
综合类   74篇
化学工业   3106篇
金属工艺   37篇
机械仪表   17篇
建筑科学   20篇
矿业工程   6篇
能源动力   114篇
轻工业   87篇
水利工程   4篇
石油天然气   62篇
武器工业   3篇
无线电   70篇
一般工业技术   327篇
冶金工业   9篇
原子能技术   10篇
自动化技术   11篇
  2024年   14篇
  2023年   26篇
  2022年   20篇
  2021年   114篇
  2020年   73篇
  2019年   73篇
  2018年   107篇
  2017年   119篇
  2016年   164篇
  2015年   155篇
  2014年   181篇
  2013年   236篇
  2012年   204篇
  2011年   174篇
  2010年   141篇
  2009年   159篇
  2008年   172篇
  2007年   203篇
  2006年   236篇
  2005年   180篇
  2004年   264篇
  2003年   230篇
  2002年   173篇
  2001年   106篇
  2000年   43篇
  1999年   42篇
  1998年   51篇
  1997年   27篇
  1996年   34篇
  1995年   33篇
  1994年   32篇
  1993年   28篇
  1992年   25篇
  1991年   28篇
  1990年   14篇
  1989年   12篇
  1988年   6篇
  1987年   4篇
  1986年   7篇
  1985年   22篇
  1984年   14篇
  1983年   10篇
  1982年   6篇
  1979年   1篇
排序方式: 共有3963条查询结果,搜索用时 15 毫秒
1.
This paper reports the thermal, morphological and mechanical properties of environmentally friendly poly(3-hydroxybutyrate) (PHB)/poly(butylene succinate) (PBS) and PHB/poly[(butylene succinate)-co-(butylene adipate)] (PBSA) blends, prepared by melt mixing. The blends are known to be immiscible, as also confirmed by the thermodynamic analysis here presented. A detailed quantification of the crystalline and amorphous fractions was performed, in order to interpret the mechanical properties of the blends. As expected, the ductility increased with increasing PBS or PBSA amount, but in parallel the decrease in the elastic modulus appeared limited. Surprisingly, the elastic modulus was found properly described by the rule of mixtures in the whole composition range, thus attesting mechanical compatibility between the two blend components. This unusual behavior has been explained as due to co-continuous morphology, present in a wide composition range, but also at the same time as the result of shrinkage occurring during sequential crystallization of the two components, which can lead to physical adhesion between matrix and dispersed phase. For the first time, the elastic moduli of the crystalline and mobile amorphous fractions of PBS and PBSA and of the mobile amorphous fraction of PHB at ambient temperature have been estimated through a mechanical modelling approach. © 2021 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   
2.
定义了混煤和锅炉目标煤的煤质偏差,给出以煤质偏差作为目标函数的掺配优化模型,通过调整某个成分的期望误差,可单独调节该成分与目标煤的接近程度;通过对模型约束条件设定,可限制低灰熔点煤的掺配份额,控制炉膛结焦,或提高采购量大的单煤的掺配比例。基于最小煤质偏差模型,针对某670 MW超临界压力直流锅炉进行掺配优化模拟,提出煤场存放的优化概念和方法。结果表明:该模型能够从复杂的单煤煤源中找到最接近目标煤质的掺配方案,优化后入炉煤质稳定,且接近目标煤质。  相似文献   
3.
This review paper deals with the overall crystallization behavior of polyethylene/wax blends as phase change materials (PCMs) for thermal energy storage with the determination of their thermal properties. The addition of molten wax to the polyethylenes decreases the crystallization and melting temperatures of the blends. However, incorporating fillers to the polyethylene/wax blends can either decrease or increase the crystallization and melting temperatures of the composites depending on the filler type. The normalized enthalpy values of linear low-density polyethylene showed no significant change when increasing the wax content. On the contrary, the normalized enthalpy values of the wax in the blends were lesser than that of pure wax and increased with increasing wax content. Since the wax in the blend had a lower crystallinity compared to pure wax, this influences its effectiveness as a PCM for thermal energy storage. The effect of different polyethylenes on the wax morphology gave rise to enhance phase separation when wax was blended to high-density polyethylene as compared to the other polyethylenes. On the contrary, the effect of various waxes on the morphology of polyethylene resulted in different morphologies due to the molecular weight of the wax used and the structure of the polyethylene chain. The addition of fillers to the polyethylene (PE)/wax samples resulted in enhanced phase separation. The overall isothermal crystallization rate and the equilibrium melting temperature of PEs in the PEs/wax blends were depressed by wax addition due to the wax dilution effect.  相似文献   
4.
The shape memory effect (SME) does not only concern the macroscopic structure. It concerns also the polymer structure at morphological, macromolecular, and molecular scales. This effect may depend on different physicochemical properties like morphology heterogeneity, chain rigidity, steric hindrance, chain polarity, free volume, cross-linking or entanglement density, molecular shape and weight, and so on. Hence, finding the relationship between the SME and these properties is very important. This can help to obtain the knowledge about the phenomenon origin and mechanism. One of the basic polymer properties, which can have direct SME, may be the molecular weight (Mw ). The question here is: If the Mw of a shape memory polymer (SMP) changes, for different reasons like degradation, what will be the effect of this change on its SME. In order to answer to this question, the investigation is focused on an SMP blend of 40% poly(ɛ-caprolactone) (PCL) and 60% styrene-butadiene-styrene (SBS). Then, enzymatic hydrolysis is performed on this blend to change its Mw . It is shown that this change is only related to the variation in the Mw of PCL. After that, different samples with a distinct average Mw are prepared and characterized by various experimental methods. Shape memory tests are performed on these blends, and the recovery rate (Rr ) for each of them is determined. It is found that when Mw of PCL decreases, its degree of crystallinity, its glass transition, and its melting temperatures, corresponding to the PCL phase, increase. However, the elongation at break of the blend declines with the reduction in Mw . The tests show that the alteration in the blend's Mw influences its SME. Indeed, Rr of the (PCL/SBS) mixture drops with the decrease in Mw of PCL.  相似文献   
5.
Waxy, normal and high-amylose maize starches were subjected to heat-moisture treatment (HMT) and then added to wheat flour (WF) in different ratios (1%, 5% and 10%). The properties of blends and their cooked noodles were studied to investigate the effects of HMT starches. The incorporation of HMT starch in WF led to an increase in swelling power, peak viscosity and breakdown and to a decrease in setback, thus inhibiting retrogradation, hence enhancing resultant noodle softness. Compared to the same addition ratio of native starch to WF, HMT starch led to higher tensile strength and extensibility in resultant noodles. WF with added HMT starch had higher resistant starch than with native starch. This study showed that addition of HMT maize starch has potential to bring nutritional benefits. However, it is necessary to select the proper blending ratio and amylose content of starch to add, in consideration of its effect on noodle quality.  相似文献   
6.
Multiwall carbon nanotubes (CNT) or montmorillonite clay (MMT-30B) were added to a poly(hexamethylene isophthalamide-co-terephthalamine) (an amorphous polyamide - aPA) and styrene-ethylene/butylene-styrene graphitized with maleic anhydride (SEBS) blend, in different concentrations, in order to investigate the morphology, thermal properties and flammability behavior. Different nanoparticle localizations in the phase blend were observed through transmission electronic microscopy. CNT nanoparticles are localized in SEBS phase, and MMT-30B nanoparticles in aPA phase. No significant changes were observed on transition temperatures and thermal stability with both nanoparticle additions. However, a slight increase on storage modulus for clay nanocomposites and a slight reduction for carbon nanotube nanocomposites were observed, due to their different phase localizations. Regarding flammability, CNT nanocomposites showed better performance as a flame retardant when compared to samples with MMT-30B. Although the MMT-30B nanocomposites could not be classified according to the UL-94 criteria, no dripped flaming particles were observed, due to the a char barrier formation on the polymer surface. The CNT nanocomposites were classified according to the UL-94 criteria as V-2. The CNT's selective localization on the SEBS phase decreases its heat-release rate, but no interconnected network structure was formed in the matrix to suppress the dripping flaming particles.  相似文献   
7.
Interest in developing high-performance blends for niche applications has grown significantly in efforts to meet ever-increasing harsh environment demands. In this work, four model poly(aryl-ether-ketone)/polybenzimidazole (PAEK/PBI) blends were chosen to study the influence of premixing methods, processing, and matrix polymers, on their mechanical properties. Among the model poly(ether ether ketone) (PEEK) and PBI blends, mechanical properties are greatly enhanced by melt premixing. The molding process mainly affects the matrix crystallinity, which in turn greatly influences fracture toughness of the blend. Poly(ether ketone ketone) (PEKK) and PBI blend exhibits a slightly lower tensile strength and fracture toughness than PEEK/PBI due to the differences in inherent properties of PEEK and PEKK matrices and their interfacial interaction with PBI. The processing−structure–property relationship of PAEK/PBI blends is established to help guide optimal design of high-performance polymer blends for structural applications. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48966.  相似文献   
8.
An alternative for reducing emissions from marine fuel is to blend bio-oil from lignocellulose non-edible feedstocks to diesel fossil fuels. Phase diagrams of the ternary systems were built to represent the transition from heterogeneous regions to homogeneous regions. Four homogeneous blends of bio-oil of eucalyptus-bioethanol-marine gasoil were experimentally characterized with respect to the most important fuel parameters for marine engines: water content, flash point, low heating value, viscosity, and acidity. Blends with closer properties to marine gasoil replacement, lower costs, and environmental impacts should be tested for large engines.  相似文献   
9.
The polyamide 6-polyurethane copolymer (PA6-b-PU-b-PA6) was synthesized through anionic suspension polymerization and then mixed with polyamide 6/thermoplastic polyurethane (PA6/TPU) and polyamide 6, 6/thermoplastic polyurethane (PA66/TPU) blends using as the compatibilizer. The results show that the PA6-b-PU-b-PA6 copolymers powders several can be obtained through suspension polymerization using dimethicone as disperse medium. The average diameter of PA6-b-PU-b-PA6 copolymer powders decreased with the increasing of PU content. With the addition of PA6-b-PU-b-PA6, the TPU phase dispersed more uniformly in PA6 or PA66 matrix, and the size of TPU dispersed phase decreased obviously. The PA6-b-PU-b-PA6 copolymer with higher PU content shows better compatibilizing effect. Addition of PA6-b-PU-b-PA6 can improve both strength and toughness of the PA/TPU blends. When the amount of PA6-PU25% copolymer was 5 phr, the tensile strength and notched impact strength of PA6/TPU/PA6-PU25% blends increased 29 and 159.4%, respectively, compared to the PA6/TPU blend without compatibilizer.  相似文献   
10.
Maleated poly(lactic acid) (PLA-g-MA) was prepared through melt grafting of maleic anhydride onto a PLA backbone with the aid of a radical initiator. PLA-g-MA thus formed was incorporated into PLA/polyamide 11 (PA11) blends as a reactive compatibilizer. By morphological observation, it was assessed that PLA-g-MA lowered the interfacial energy and strengthened the interface between PLA and PA11. However, the compatibilized PLA/PA11 blends did not show significant improvement of impact strength compared with noncompatibilized PLA/PA11 blends. Measurements of the molecular weight and impact strength of PLAs compounded with various amounts of radical initiators revealed that decreased molecular weight of PLA by the radical initiator used for the preparation of PLA-g-MA is responsible for this unexpected result. To compensate the decrease of the molecular weight, a crosslinking agent was incorporated in the preparation step of PLA-g-MA. It was found that the crosslinking agent is effective in preventing the molecular weight reduction. As a result, the impact strength of the PLA/PA11 blend was enhanced to a great extent by the PLA-g-MA prepared with the crosslinking agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号