首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   38篇
  国内免费   23篇
电工技术   10篇
综合类   30篇
化学工业   223篇
金属工艺   34篇
机械仪表   11篇
建筑科学   7篇
矿业工程   9篇
能源动力   5篇
轻工业   59篇
水利工程   3篇
石油天然气   37篇
武器工业   1篇
无线电   16篇
一般工业技术   49篇
冶金工业   12篇
自动化技术   28篇
  2024年   1篇
  2023年   14篇
  2022年   18篇
  2021年   17篇
  2020年   26篇
  2019年   17篇
  2018年   20篇
  2017年   13篇
  2016年   13篇
  2015年   23篇
  2014年   28篇
  2013年   27篇
  2012年   36篇
  2011年   22篇
  2010年   23篇
  2009年   28篇
  2008年   18篇
  2007年   26篇
  2006年   27篇
  2005年   30篇
  2004年   22篇
  2003年   18篇
  2002年   7篇
  2001年   8篇
  2000年   8篇
  1999年   9篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
排序方式: 共有534条查询结果,搜索用时 31 毫秒
1.
唐志勇  熊伟文  田华峰 《塑料》2020,49(1):72-76,80
以均苯四甲酸二酐(PMDA)、多苯基多亚甲基多异氰酸酯(PAPI)、聚醚多元醇为主要原料,分别采用聚酰亚胺(PI)预聚法、聚氨酯(PU)预聚法和一步法制备聚氨酯酰亚胺泡沫,从微观形貌、力学性能、热稳定性能以及阻燃性能方面对上述3种制备工艺进行对比和评估。实验结果表明,采用一步法制备PUI泡沫时,PU链段和PI链段同时增长,容易造成泡孔缺陷,导致泡沫的力学性能较差;在采用PU预聚法制备的PUI泡沫中,PU链段含量较高,因此,泡孔孔径分布较宽且平均泡孔直径较大,对应的热稳定性和阻燃性能较差;采用PI预聚法制备的PUI泡沫的泡孔孔径分布窄且平均泡孔直径较小,对应的压缩性能、热稳定性以及阻燃性能均达到最佳。  相似文献   
2.
二甲氧基甲烷作为用途广泛的化工原料,其合成技术在不断创新与发展。根据反应原料和工艺流程的不同对二甲氧基甲烷合成技术进行了概述与简评,该技术包含甲醇与甲醛催化缩合制备二甲氧基甲烷、甲醇与多聚甲醛反应制备二甲氧基甲烷、甲醇一步法制取二甲氧基甲烷、离子液体电催化氧化甲醇制取二甲氧基甲烷、二甲醚氧化生成二甲氧基甲烷、二溴甲烷合成二甲氧基甲烷、合成气制备二甲氧基甲烷、甲醇与二氧化碳反应制取二甲氧基甲烷等。醇醛缩合制备二甲氧基甲烷仍是当前主流的生产工艺,甲醇一步法制取二甲氧基甲烷工艺因在环境和投资上有优势而被广泛研究,是最具工业化前景的新技术,该技术尚需突破的是兼具氧化还原性与酸性的双功能催化剂。  相似文献   
3.
4.
滴定-凝胶法制备球形水凝胶吸附材料具有3D倒漏斗状微观形貌结构,孔径分布宽泛,对水体中重金属、染料等污染物具有快速响应机制,已被广泛用于水处理过程研究。综述了滴制法制备球形水凝胶吸附材料的主要过程机理、水凝胶具有的特殊形貌结构及其在水处理过程中的应用,分析了球形水凝胶吸附材料在水处理应用过程中存在的问题和局限,并指出了其在水处理领域的应用前景及发展方向。  相似文献   
5.
刘燕  安崇伟  罗进  王晶禹 《含能材料》2018,26(12):1009-1013
为了改善2,4,6,8,10,12?六硝基?2,4,6,8,10,12?六氮杂异伍兹烷(CL?20)的安全性能,采用一步球磨法制备出纳米CL?20/AP含能复合粒子,并通过扫描电子显微镜(SEM)、粉末X射线衍射(XRD)、差示扫描量热法(DSC)和撞击感度测试对其性能进行了研究。结果表明,纳米CL?20/AP含能复合粒子球形化效果明显,粒径约为300~500 nm;复合粒子的峰位置发生明显的偏移、新增和消失,推测其物相晶型可能发生变化,由于多晶样品的择优取向,复合粒子的X射线衍射峰强度明显降低;纳米CL?20/AP含能复合粒子的放热峰相比原料提前了,更容易发生热分解;撞击感度测试中,复合粒子的特性落高比CL?20增加了13.10 cm,安全性能更好。  相似文献   
6.
By fast heating the nano-sized Al2O3 and carbon black mixtures at 50°C/min to 1750°C for 30–120 min, single-phase AlON powders were successfully obtained by a fast one-step carbothermal reduction and nitridation (CRN) method. The AlON ceramics pressureless sintered at 1880°C for 150 min by these powders show high transmittances up to 83%–84%, which indicates that the proposed fast one-step CRN method is an effective and efficient way with strong robustness to synthesize single-phase AlON powder for highly transparent AlON ceramics. It was found that α-Al2O3 particles do not have enough time to aggregate and coalesce during heating due to the tremendously shortened heating span, which significantly inhibited particle coarsening until the formation of AlON starts. The fast-formed AlON further inhibits the coarsening of α-Al2O3 during dwelling. Consequently, single-phase AlON powder of small primary particles can be obtained after 30 min dwelling at 1750°C.  相似文献   
7.
二甲醚是一种非常重要的化工原料,可用于多种精细化学品的合成,它是一种理想的清洁替代能源。一步法二甲醚合成技术克服了甲醇合成反应受到热力学平衡的限制,大大提高了CO的单程转化率。对以合成气为原料采用一步法二甲醚合成技术的反应原理,催化剂的组成与制备方法,温度、压力、空速等因素对反应造成的影响进行描述。对一步法二甲醚合成技术研发的生产装置发展进程情况进行综述和展望。  相似文献   
8.
以正十二醇和葡萄糖为原料一步法制备十二烷基葡萄糖苷,研究了不同反应条件(催化体系、催化剂用量、温度、醇糖比等)对反应过程转化率和选择性的影响,提出了此反应过程的物理模型。研究结果表明,合成十二烷基葡萄糖苷的反应主要由生成十二烷基葡萄糖苷的主反应和生成多糖的副反应组成。十二醇与葡萄糖反应生成烷基葡萄糖苷的主反应属于液相反应机理,首先葡萄糖溶解于十二醇中,然后与十二醇发生均相反应,碳正离子与十二醇的反应是整个反应的控制步骤。反应过程中,反应体系中部分固相葡萄糖处于熔融状态,能捕捉液相中的催化剂,生成多糖副产物。不同反应条件下的实验结果表明,此反应机理能很好地描述反应过程,为此反应过程的动力学研究提供了理论基础。  相似文献   
9.
《国际计算机数学杂志》2012,89(16):2274-2279
In this paper, we introduce a one-step iterative scheme for finding a common fixed point of a countable family of multivalued quasi-nonexpansive mappings in a real uniformly convex Banach space. We establish weak and strong convergence theorems of the proposed iterative scheme under some control conditions.  相似文献   
10.
以微晶蜡为原料,采用纯氧氧化和催化酯化一步法工艺,合成了高性能酯化蜡.最佳工艺条件为:反应温度150℃,反应时间6h,氧气流量2.0 L/(h·g),助酯化剂为原料质量的15%,酯化催化剂为原料质量的0.3%;在产物中,调入质量分数15%的高熔点聚合物,可以制得酸值在2~10 mg/g、皂化值在78~88 mg/g、熔...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号