首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22923篇
  免费   2617篇
  国内免费   1809篇
电工技术   1440篇
综合类   1748篇
化学工业   2131篇
金属工艺   382篇
机械仪表   2123篇
建筑科学   258篇
矿业工程   132篇
能源动力   218篇
轻工业   331篇
水利工程   131篇
石油天然气   111篇
武器工业   175篇
无线电   12270篇
一般工业技术   3356篇
冶金工业   288篇
原子能技术   219篇
自动化技术   2036篇
  2024年   27篇
  2023年   317篇
  2022年   416篇
  2021年   584篇
  2020年   678篇
  2019年   512篇
  2018年   563篇
  2017年   805篇
  2016年   742篇
  2015年   962篇
  2014年   1334篇
  2013年   1547篇
  2012年   1729篇
  2011年   1613篇
  2010年   1188篇
  2009年   1215篇
  2008年   1266篇
  2007年   1531篇
  2006年   1495篇
  2005年   1334篇
  2004年   1104篇
  2003年   1127篇
  2002年   818篇
  2001年   897篇
  2000年   687篇
  1999年   488篇
  1998年   381篇
  1997年   318篇
  1996年   298篇
  1995年   227篇
  1994年   220篇
  1993年   211篇
  1992年   165篇
  1991年   150篇
  1990年   123篇
  1989年   92篇
  1988年   36篇
  1987年   18篇
  1986年   16篇
  1985年   31篇
  1984年   18篇
  1983年   13篇
  1982年   8篇
  1981年   8篇
  1980年   6篇
  1979年   7篇
  1978年   4篇
  1975年   3篇
  1974年   7篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Refining ceramic microstructures to the nanometric range to minimize light scattering provides an interesting methodology for developing novel optical ceramic materials. In this work, we reported the fabrication and properties of a new nanocomposite optical ceramic of Gd2O3-MgO. The citric acid sol-gel combustion method was adopted to fabricate Gd2O3-MgO nanocomposites with fine-grain sizes, dense microstructures and homogeneous phase domains. Nanopowders with low agglomeration and improved sinterability can be obtained by elaborating Φ values. Further refining of the microstructure of the nanocomposites was achieved by elaborating the hot-pressing conditions. The sample sintered at 65 MPa and 1300 °C showed a quite high hardness value of 14.3 ± 0.2 GPa, a high transmittance of 80.3 %–84.7 % over the 3?6 μm wavelength range, due mainly to its extremely fine-grain size of Gd2O3 and MgO (93 and 78 nm, respectively) and high density.  相似文献   
2.
Optical imaging has played a pivotal role in deciphering in vivo bioinformatics but is limited by shallow penetration depth and poor imaging performance owing to interfering tissue autofluorescence induced by concurrent photoexcitation. The emergence of near-infrared (NIR) self-luminescence imaging independent of real-time irradiation has timely addressed these problems. There are two main kinds of self-luminescent agents, namely inorganic and organic luminophores. Inorganic luminophores usually suffer from long-term biotoxicity concerns resulting from potential heavy-metal ions leakage and nonbiodegradability, which hinders their further translational application. In contrast, organic luminophores, especially organic semiconducting luminophores (OSLs) with good biodegradable potential, tunable design, and outstanding optical properties, are preferred in biological applications. This review summarizes the recent progress of OSLs used in NIR afterglow, chemiluminescence, and bioluminescence imaging. Molecular manipulation and nanoengineering approaches of OSLs are discussed, with emphasis on strategies that can extend the emission wavelength from visible to NIR range and amplify luminescence signals. This review concludes with a discussion of current challenges and possible solutions of OSLs in the self-luminescence field.  相似文献   
3.
4.
Electronic devices require the printed circuit board(PCB)to support the whole structure,but the assembly of PCBs suffers from welding problem of the electronic components such as surface mounted devices(SMDs)resistors.The automated optical inspection(AOI)machine,widely used in industrial production,can take the image of PCBs and examine the welding issue.However,the AOI machine could commit false negative errors and dedicated technicians have to be employed to pick out those misjudged PCBs.This paper proposes a machine learning based method to improve the accuracy of AOI.In particular,we propose an adjacent pixel RGB value based method to pre-process the image from the AOI machine and build a customized deep learning model to classify the image.We present a practical scheme including two machine learning procedures to mitigate AOI errors.We conduct experiments with the real dataset from a production line for three months,the experimental results show that our method can reduce the rate of misjudgment from 0.3%–0.5%to 0.02%–0.03%,which is meaningful for thousands of PCBs each containing thousands of electronic components in practice.  相似文献   
5.
High-efficiency Yb:Y2O3 laser ceramics were fabricated using the vacuum-sintering plus hot isostatic pressing (HIP) without sintering additives. High-purity well-dispersed nanocrystalline Yb:Y2O3 powder was synthesized using a modified co-precipitation method in-house. The green bodies were first vacuum sintered at a temperature as low as 1430°C and then HIPed at 1450°C. Finally, the samples were air annealed at 800°C for 10 h. Although no sintering aids were used, full density of the samples with excellent optical homogeneity and an inline transmission of 80% at 400 nm could be obtained. Moreover, photodarkening phenomenon was not detected in the ceramics. Preliminary laser experiment with the fabricated ceramics in a two-mirror cavity has demonstrated 32 W continuous-wave (CW) output at ∼1077 nm with an optical-to-optical conversion efficiency of 58.2%. To the best of our knowledge, this is so far the highest CW output power and optical-to-optical conversion efficiency achieved with the Yb3+-doped sesquioxide ceramics in a simple two-mirror cavity.  相似文献   
6.
超稳光纤链路这个概念包含超稳频率光源和超稳频率传递的光纤链路。从当前看,如何利用已有庞大的公用电信网、专用网的光纤和光网络的资源,选择一个通用的光纤通路改造成超稳光纤链路来实现频率传递,取代基于卫星的频率传递,提高传输的频率精度,这是一个巨大的系统工程。本文对超稳频率光源和超稳频率传递的光纤链路的关键技术进行研究和讨论。  相似文献   
7.
The current demand for high-refractive index materials is very high due to their importance in optoelectronic applications. Such materials already exist in the market, but they present many disadvantages. They might contain toxic metals; their preparation can be challenging or produce high quantity of waste. Consequently, there is an urgent need to produce new friendly coatings with high-refractive index. Hybrid organic–inorganic polysiloxanes can offer a solution to this problem. They can be easily prepared from nontoxic alkoxy silanes using the sol–gel chemistry process. Herein, a series of new hybrid polysiloxanes are synthesized from the monomer 1–(2–(triethoxysilyl)ethyl)triphenylsilane and other silanes. The preparation of the macromolecules is optimized at both stages of the sol–gel process. The polymers are characterized by gel permeation chromatography and NMR spectroscopy. Spin coating of the materials on silicon wafers, followed by film thickness and refractive index measurements, indicates that the new polysiloxanes can have refractive indexes as high as 1.6 with thicknesses varying from 2200 to 3700 nm. Consequently, it is expected that the new materials described in this report are valuable for optoelectronic applications such as high-dielectric constant (high-k) gate oxides, interlayer high-k dielectrics, or high-refractive index abrasion resistant coatings.  相似文献   
8.
The retinal ganglion cells (RGC) may be considered an easily accessible pathophysiological site of degenerative processes in neurological diseases, such as the RGC damage detectable in multiple sclerosis (MS) patients with (HON) and without a history of optic neuritis (NON). We aimed to assess and interrelate RGC functional and structural damage in different retinal layers and retinal sites. We included 12 NON patients, 11 HON patients and 14 healthy controls for cross-sectional multifocal pattern electroretinography (mfPERG) and optical coherence tomography (OCT) measurements. Amplitude and peak times of the mfPERG were assessed. Macula and disc OCT scans were acquired to determine macular retinal layer and peripapillary retinal nerve fiber layer (pRNFL) thickness. In both HON and NON patients the foveal N2 amplitude of the mfPERG was reduced compared to controls. The parafoveal P1 peak time was significantly reduced in HON only. For OCT, parafoveal (pfGCL) and perifoveal (pGCL) ganglion cell layer thicknesses were decreased in HON vs. controls, while pRNFL in the papillomacular bundle sector (PMB) showed reductions in both NON and HON. As the mfPERG derived N2 originates from RGC axons, these findings suggest foveal axonal dysfunction not only in HON, but also in NON patients.  相似文献   
9.
It is known that optical flow estimation techniques suffer from the issues of ill-defined edges and boundaries of the moving objects. Traditional variational methods for optical flow estimation are not robust to handle these issues since the local filters in these methods do not hold the robustness near the edges. In this paper, we propose a non-local total variation NLTV-L1 optical flow estimation method based on robust weighted guided filtering. Specifically, first, the robust weighted guided filtering objective function is proposed to preserve motion edges. The proposed objective function is based on the linear model which is computationally efficient and edge-preserving in complex natural scenarios. Second, the proposed weighted guided filtering objective function is incorporated into the non-local total variation NLTV-L1 energy function. Finally, the novel NLTV-L1 optical flow method is performed using the coarse-to-fine process. Additionally, we modify some state-of-the-art variational optical flow estimation methods by the robust weighted guided filtering objective function to verify the performance on Middlebury, MPI-Sintel, and Foggy Zurich sequences. Experimental results show that the proposed method can preserve edges and improve the accuracy of optical flow estimation compared with several state-of-the-art methods.  相似文献   
10.
Optical interferometry is a powerful tool for measuring and characterizing areal surface topography in precision manufacturing. A variety of instruments based on optical interferometry have been developed to meet the measurement needs in various applications, but the existing techniques are simply not enough to meet the ever-increasing requirements in terms of accuracy, speed, robustness, and dynamic range, especially in on-line or on-machine conditions. This paper provides an in-depth perspective of surface topography reconstruction for optical interferometric measurements. Principles, configurations, and applications of typical optical interferometers with different capabilities and limitations are presented. Theoretical background and recent advances of fringe analysis algorithms, including coherence peak sensing and phase-shifting algorithm, are summarized. The new developments in measurement accuracy and repeatability, noise resistance, self-calibration ability, and computational efficiency are discussed. This paper also presents the new challenges that optical interferometry techniques are facing in surface topography measurement. To address these challenges, advanced techniques in image stitching, on-machine measurement, intelligent sampling, parallel computing, and deep learning are explored to improve the functional performance of optical interferometry in future manufacturing metrology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号