首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36828篇
  免费   3045篇
  国内免费   1724篇
电工技术   1013篇
综合类   1547篇
化学工业   12226篇
金属工艺   2969篇
机械仪表   603篇
建筑科学   826篇
矿业工程   898篇
能源动力   3936篇
轻工业   982篇
水利工程   205篇
石油天然气   1076篇
武器工业   209篇
无线电   3692篇
一般工业技术   7583篇
冶金工业   2692篇
原子能技术   500篇
自动化技术   640篇
  2024年   60篇
  2023年   845篇
  2022年   919篇
  2021年   1404篇
  2020年   1372篇
  2019年   1307篇
  2018年   1208篇
  2017年   1330篇
  2016年   1208篇
  2015年   1241篇
  2014年   1851篇
  2013年   2349篇
  2012年   2261篇
  2011年   2933篇
  2010年   2257篇
  2009年   2194篇
  2008年   1922篇
  2007年   2183篇
  2006年   1919篇
  2005年   1603篇
  2004年   1419篇
  2003年   1243篇
  2002年   1082篇
  2001年   870篇
  2000年   826篇
  1999年   623篇
  1998年   525篇
  1997年   407篇
  1996年   382篇
  1995年   299篇
  1994年   289篇
  1993年   220篇
  1992年   211篇
  1991年   165篇
  1990年   155篇
  1989年   129篇
  1988年   81篇
  1987年   47篇
  1986年   28篇
  1985年   48篇
  1984年   44篇
  1983年   20篇
  1982年   43篇
  1981年   21篇
  1980年   13篇
  1979年   9篇
  1978年   5篇
  1977年   5篇
  1959年   6篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Investigation on the miniaturized parallel multichannel-based devices packed with glass beads to improve the mass exchange execution is the critical focal point of the current study. One of the essential parameters to specify the miniaturized devices' flow distribution is the residence time distribution (RTD). In the present context, the RTDs of a liquid tracer were investigated for the air-water multiphase flows (concurrent) across the multichannel-based miniaturized devices (comprising of 11 similar dimensional parallel channels). The devices were variable in height and packed with glass beads. The conductivity estimations generated the RTD curves and were addressed by the axial dispersion model (ADM). The fluid-flow rates differed within the range of 5–23 ml min−1. The axial dispersion coefficients and the rate of the specific energy dispersion were investigated. The effects of pressure difference and geometry on the hydrodynamic attributes and mixing properties were well-illustrated, and the new correlations were suggested.  相似文献   
2.
3.
The introduction of catalyst on anode of solid oxide fuel cell (SOFC) has been an effective way to alleviate the carbon deposition when utilizing biogas as the fuel. A series of La0.6Sr0.4Co1-xNixO3-δ (x = 0, 0.2, 0.4, 0.6, 0.8) oxides are synthesized by sol-gel method and used as catalysts precursors for biogas dry reforming. The phase structure of La0.6Sr0.4Co1-xNixO3-δ oxides before and after reduction are characterized by X-ray diffraction (XRD). The texture properties, carbon deposition, CH4 and CO2 conversion rate of La0.6Sr0.4Co1-xNixO3-δ catalysts are evaluated and compared. The peak power density of 739 mW cm?2 is obtained by a commercial SOFC with La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst at 850 °C when using a mixture of CH4: CO2 = 2:1 as fuel. This shows a great improvement from the cell without catalyst for internal dry reforming, which is attributed to the formation of NiCo alloy active species after reduction in H2 atmosphere. The results indicate the benefits of inhibiting the carbon deposition on Ni-based anode through introducing the La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst precursor. Additionally, the dry reforming technology will also help to convert part of the exhaust heat into chemical energy and improve the efficiency of SOFC system with biogas fuel.  相似文献   
4.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
5.
High-temperature water electrolysis through solid oxide electrolysis cells (SOEC) will play a key role in building a hydrogen economy in the future. However, the delamination between the air electrode and the electrolyte remains a critical issue to be addressed. Previously, it was hypothesized that Co migration may improve the catalytic activity of the SrZrO3 second phase at the LSCF-YSZ interface, eventually leading to the delamination. In this work, the LSCF-YSZ interfaces sintered at different temperatures were examined in detail. The activation behaviors of the LSCF electrodes upon application with electrolysis current were characterized under different conditions. Further, samples containing purposely added SrZrO3 interlayer with and without cobalt were fabricated and compared. The activation process is less significant for the sample with cobalt-added SrZrO3 interlayer than the sample with pure SrZrO3 layer, supporting the hypothesis that Co migration may lead to the activation behavior.  相似文献   
6.
We investigate synthesis, phase evolution, hollow and porous structure and magnetic properties of quasi-amorphous intermediate phase (QUAIPH) and hematite (α-Fe2O3) nanostructure synthesized by annealing of akaganeite (β-FeOOH) nanorods. It is found that the annealing temperature determines the phase composition of the products, the crystal structure/size dictates the magnetic properties whereas the final nanorod morphology is determined by the starting material. Annealing of β-FeOOH at ~300 °C resulted in the formation of hollow QUAIPH nanorods. The synthesized material shows low-cytotoxicity, superparamagnetism and good transverse relaxivity, which is rarely reported for QUAIPH. The QUAIPH nanorods started to transform to porous hematite nanostructures at ~350 °C and phase transformation was completed at 600 °C. During the annealing, the crystal structure changed from monoclinic (akaganeite) to quasi-amorphous and rhombohedral (hematite). Unusually, the crystallite size first decreased (akaganeite → QUAIPH) and then increased (QUAIPH → hematite) during annealing whereas the nanorods retained particle shape. The magnetic properties of the samples changed from antiferromagnetic (akaganeite) to superparamagnetic with blocking temperature TB = 84 K (QUAIPH) and finally to weak-ferromagnetic with the Morin transition at TM = 244 K and high coercivity HC = 1652 Oe (hematite). The low-cytotoxicity and MRI relaxivity (r2 = 5.80 mM?1 s?1 (akaganeite), r2 = 4.31 mM?1 s?1 (QUAIPH) and r2 = 5.17 mM?1 s?1 (hematite)) reveal potential for biomedical applications.  相似文献   
7.
Solid oxide fuel cells (SOFCs) are considered an important technology in terms of high efficiency and clean energy generation. Flat-tubular solid oxide fuel cell (FT-SOFC) which is a combination of tubular and planar cell geometries stands out with its performance values and low costs. In this study, the performance of an FT-SOFC is analyzed numerically by using finite element method-based design as a result of changing parameters by using different fuels which are pure hydrogen and coal gas with various proportions of CO. In addition, cell performance values for different temperatures were analyzed and interpreted. Analyzes have been performed by using COMSOL Multiphysics software. The rates of CO composition used are 10%, 20%, and 40%, respectively. In addition, the air was used as the oxidizer in all cases. The cell voltage and average cell power of the FT-SOFC were examined under the 800 °C operating condition. The maximum power value and current density value were obtained as 710 W/m2 and 1420 A/m2 for the flat-tubular cell, respectively. As a result of the study, it was observed that the maximum cell power densities increased with increasing temperature. Analysis results showed that FT-SOFCs have suitable properties for different fuel usage and different operating temperatures. High-performance values and design features in different operating conditions are expected to make FT-SOFC the focus of many studies in the future.  相似文献   
8.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
9.
Oxide-based near infrared (IR)-shielding coatings consisting of quarter‐wave stacks of oxygen-deficient tantalum oxide (Ta2O5?x) and silicon oxide (SiO2) multilayers and tin-doped indium oxide (In2O3) (ITO) films with the thicknesses of 200–600 nm can block the passage of IR-A (wavelength: 760–1400 nm) and IR-B (wavelength: 1400–3000 nm) radiation, respectively. In this study, the optical properties and microstructure of these oxide-based IR-shielding coatings were investigated. Transmission electron microscopy images indicated that amorphous Ta2O5?x/amorphous SiO2 multilayers were uniform and dense. ITO films were found to be highly crystalline and show carrier concentrations of up to 7.1 × 1020 cm?3, resulting in the strong IR-B optical absorption due to the plasma excitation of the free carriers. Oxide-based IR-shielding coatings with an ITO thickness of 420 nm were found to have near-IR shielding rates of >90% and an average visible light transmittance of >70%. The effects of IR on human keratinocytes were studied to evaluate the IR-induced photoaging in human skin. It was found that the downregulation of cellular proliferation and the enhancement of senescence-associated β-galactosidase activity induced by IR irradiation were significantly inhibited by oxide-based IR-shielding coatings. Thus, this study provides a facile method for the development of coatings for smart windows with high IR-shielding ability and high visible light transmittance.  相似文献   
10.
《Ceramics International》2021,47(18):25505-25513
Herein, (Co0.5Ni0.5)Cr0.3Fe1.7O4/graphene oxide nanocomposites were fabricated by ultrasonication technique, using pure spinel ferrite and graphene oxide synthesized by sol-gel method and modified Hummers' method, respectively. The effect of graphene incorporation with ferrite nanoparticles was studied by X-ray diffraction (XRD), electrical and dielectric measurements. XRD analysis revealed the spinel phase for the ferrite sample and confirmed the formation of graphene oxide. The crystallite size was found in the range of 3743 nm and the porosity increased with the increase in the concentration of graphene oxide in the composites. The DC electrical resistivity of spinel ferrite was found equal to 3.83×109 Ω.cm and it substantially decreased with the increase in the percentage of graphene oxide at room temperature. The real and imaginary part of relative permittivity followed the Maxwell-Wagner type of interfacial polarization. AC conductivity confirmed the conduction by hopping mechanism and increased on increasing the GO content. The coupling of magnetic ferrite with graphene oxide tunes the magneto-electrical properties for potential applications at high frequencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号