首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8614篇
  免费   957篇
  国内免费   215篇
电工技术   62篇
综合类   363篇
化学工业   3416篇
金属工艺   567篇
机械仪表   163篇
建筑科学   536篇
矿业工程   221篇
能源动力   286篇
轻工业   1891篇
水利工程   26篇
石油天然气   738篇
武器工业   63篇
无线电   88篇
一般工业技术   1163篇
冶金工业   144篇
原子能技术   27篇
自动化技术   32篇
  2024年   60篇
  2023年   155篇
  2022年   248篇
  2021年   340篇
  2020年   365篇
  2019年   345篇
  2018年   319篇
  2017年   329篇
  2016年   371篇
  2015年   341篇
  2014年   479篇
  2013年   518篇
  2012年   683篇
  2011年   663篇
  2010年   490篇
  2009年   482篇
  2008年   392篇
  2007年   458篇
  2006年   467篇
  2005年   360篇
  2004年   289篇
  2003年   303篇
  2002年   251篇
  2001年   210篇
  2000年   137篇
  1999年   128篇
  1998年   100篇
  1997年   84篇
  1996年   91篇
  1995年   54篇
  1994年   68篇
  1993年   32篇
  1992年   32篇
  1991年   28篇
  1990年   17篇
  1989年   17篇
  1988年   14篇
  1987年   14篇
  1986年   6篇
  1985年   8篇
  1984年   8篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1951年   4篇
排序方式: 共有9786条查询结果,搜索用时 31 毫秒
1.
An ecofriendly and biodegradable porous structure was prepared from drying aqueous foams based on nano fibrillated cellulose (NFC), extracted from softwood pulp by subcritical water/CO2 treatment (SC-NFC). The primary aim of this work was to use the modified SC-NFC as stabilizer for a water-based Pickering emulsion which upon drying, yielded porous cellulosic materials, a good dye adsorbent. In order to exploit the carboxymethylated SC-NFC (CMSC-NFC, with a degree of substitution of 0.35 and a charge density of 649 μeqv/g) as a stabilizer for water-based Pickering emulsion in subsequent step, an optimized quantity of octyl amine (30 mg/g of SC-NFC) was added to make them partially hydrophobic. A series of dry foam structures were prepared by varying the concentrations of treated CMSC-NFCs and 4 wt% was found to be the optimum concentration to yield foam with high porosity (99%) and low density (0.038 g/cc) along with high compression strength (0.24 MPa), superior to the conventionally extracted NFC. The foams were applied to capture as high as 98% of methylene blue dyes, making them a potential green candidate for treating industrial effluent. In addition, the dye adsorption kinetics and isotherms were found to be well suited with second order kinetics and Langmuir isotherm models.  相似文献   
2.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
3.
The thermal degradation of unstabilized polypropylene has been investigated under long-term processing (twin extruder) and thermal aging at 150°C, with additive concentration studies on combinations of an established hindered phenolic antioxidant (pentaerythritol tetrakis (3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate) [S1010] and two popular thioesters (distearyl-3,3′-thiodipropionate [DSTDP] and didodecyl-3,3′-thiodipropionate [DLTDP]) using melt flow rate, carbonyl index and powder diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (FTIR), and differential scanning calorimetry (DSC) (oxidation induction time [OIT]) and ultimate embrittlement time (Fracture) on injection-molded test pieces. It was found that 20:80 phenol:thioester ratios provided the best long-term thermal stability (LTTS); however, this was the reverse for processing stabilization (80:20), underlining the antioxidant nature of the two stabilizers (long term vs. melt). Melt preblending of the stabilizers (to form a no-dust blend) gave rise to improved LTTS. DRIFTS FTIR indicated that there was an improvement in preblending the additives, which removed any volatile impurities. Increased additive dispersion and localized potential efficacy in the stabilization cycle is important, as well as possible improved addition of the additives to the extruder rather than fine powder. The data are discussed in relation to the long-term stabilization of polypropylene in high-temperature applications such as under the bonnet of automobiles where minimizing stabilizer losses and maximizing synergy are important.  相似文献   
4.
Flesh colour, which is affected by cultivars and browning, can largely impact consumer acceptance in fresh-cut apples. The study profiled phenolic metabolites from apple flesh of twenty-three cultivars by widely targeted metabolomics. Comparison among white- and yellow-fleshed cultivars showed fifteen phenolics, mainly quercetin 3-O-glucoside, hyperoside, hesperetin 5-O-glucoside and cymaroside, in white-fleshed apples were significantly higher than those in yellow-fleshed apples. It may indicate a metabolite basis of yellow and white flesh colour, and better potential nutrition in white-fleshed apples. In addition, ten phenolic metabolites including five cyanidin glycosides showed significant differences between the highest and the lowest browning groups, indicating them may be crucial in browning of fresh-cut apple. This work elucidates the differences of phenolic profiles among apple cultivars with different flesh colour and provides useful data to evaluate the suitability of apple for fresh-cut processing.  相似文献   
5.
This study aims to fabricate mineral-loading nanocarriers using natural materials. The interaction patterns between ovalbumin (OVA) and four water-soluble polyphenols, namely ferulic acid (FA), (-)-Epigallo-catechin 3-gallate (EGCG), gallic acid (GA) and epicatechin (EC), were investigated. Results showed that the optimised conditions for preparing stable OVA–polyphenol complexes are at the OVA–polyphenol ratio of 4:1 at pH 6, under which OVA–FA and OVA–EGCG showed the highest stability and mineral-loading capacity among four OVA–polyphenol complexes. The fluorescence results indicated that the addition of EGCG and FA induced a significant fluorescence quenching to OVA. The interaction between OVA and polyphenols involved hydrogen bonding, hydrophobic interaction and electrostatic interaction. Fourier transform infrared spectroscopy (FTIR) analysis suggested that both FA and EGCG enhanced the stability and orderliness of the structure of OVA. The transmission electron microscopy images also exhibited the spherical structure of OVA after the addition of FA and EGCG. Furthermore, scanning electron microscope–energy dispersive X-ray spectrum results suggested that OVA–FA and OVA–EGCG complexes were better mineral carriers than OVA–GA and OVA–EC. This study may serve as the theoretical support for the promising application of OVA in the fabrication of mineral-loading nanocarriers in functional food and pharmaceutic.  相似文献   
6.
Transition metals sulfide-based nanomaterials have recently received significant attention as a promising cathode electrode for the oxygen evolution reaction (OER) due to their easily tunable electronic, chemical, and physical properties. However, the poor electrical conductivity of metal-sulfide materials impedes their practical application in energy devices. Herein, firstly nano-sized crystals of cobalt-based zeolitic-imidazolate framework (Co-ZIF) arrays were fabricated on nickel-form (NF) as the sacrificial template by a facile solution method to enhance the electrical conductivity of the electrocatalyst. Then, the Co3S4/NiS@NF heterostructured arrays were synthesized by a simple hydrothermal route. The Co-ZIFs derived Co3S4 nanosheets are grown successfully on NiS nanorods during the hydrothermal sulfurization process. The bimetallic sulfide-based Co3S4/NiS@NF-12 electrocatalyst demonstrated a very low overpotential of 119 mV at 10 mA cm?2 for OER, which is much lower than that of mono-metal sulfide NiS@NF (201 mV) and ruthenium-oxide (RuO2) on NF (440 mV) electrocatalysts. Furthermore, the Co3S4/NiS@NF-12 electrocatalyst showed high stability during cyclic voltammetry and chronoamperometry measurements. This research work offers an effective strategy for fabricating high-performance non-precious OER electrocatalysts.  相似文献   
7.
Metal-organic frameworks (MOFs) have emerged as efficient electrocatalysts due to the features of high specific surface area, rich pore structure and diversified composition. It is still challenging to synthesize self-supporting MOF-based catalysts using simple and low-cost fabrication methods. Herein, we successfully fabricated Ni-doped MIL-53(Fe) supported on nickel-iron foam (Ni-MIL-53(Fe)/NFF) as efficient electrocatalyst. A facile two-step solvothermal method without adding any metal salts was used, which can simplify the fabrication process and reduce the experimental cost. In the fabrication process, the bimetallic Ni-MIL-53(Fe)/NFF was in situ converted from an intermediate NiFe2O4/NFF. The obtained material exhibits outstanding electrocatalytic oxygen evolution performance with a low overpotential of 248 mV at 50 mA cm?2, and a small Tafel slope of 46.4 mV dec?1. This work sheds light on the simple and efficient preparation of bimetallic MOF-based material, which is promising in electrocatalysts.  相似文献   
8.
Wheat bran is rich in functional ingredients, but the high level of lipase limits its applications. Tempering–preservation treatment (at 70–90 °C with moisture of 20%–40% for 1–4 h) was exploited for stabilising wheat bran and its effect on polyphenols was investigated. The results showed that more lipase was inactivated at higher tempering moisture, temperature and longer time. The optimum condition for inactivation of wheat bran lipase was 30% moisture and 90 °C for 4 h. The inactivation rate reached 93.8% with a residual enzyme activity of 0.264 U g−1. Under the optimum condition, the sum of free phenolic acids rose from 25.4 to 55.8 µg g−1. As for bound phenolic acids, there was a slight increase of hydroxybenzoic acid derivatives but a slight decrease of hydroxycinnamic acid derivatives. The total contents of phenolic acids before and after stabilisation were not significantly different. This study showed the possibility of using tempering–preservation as an efficient method for inactivation of wheat bran lipase while maintaining its phenolic compounds, which could be used in the production of whole wheat flour.  相似文献   
9.
Natural gas foam can be used for mobility control and channel blocking during natural gas injection for enhanced oil recovery, in which stable foams need to be used at high reservoir temperature, high pressure and high water salinity conditions in field applications. In this study, the performance of methane (CH4) foams stabilized by different types of surfactants was tested using a high pressure and high temperature foam meter for surfactant screening and selection, including anionic surfactant (sodium dodecyl sulfate), non-anionic surfactant (alkyl polyglycoside), zwitterionic surfactant (dodecyl dimethyl betaine) and cationic surfactant (dodecyl trimethyl ammonium chloride), and the results show that CH4-SDS foam has much better performance than that of the other three surfactants. The influences of gas types (CH4, N2, and CO2), surfactant concentration, temperature (up to 110°C), pressure (up to 12.0 MPa), and the presence of polymers as foam stabilizer on foam performance was also evaluated using SDS surfactant. The experimental results show that the stability of CH4 foam is better than that of CO2 foam, while N2 foam is the most stable, and CO2 foam has the largest foam volume, which can be attributed to the strong interactions between CO2 molecules with H2O. The foaming ability and foam stability increase with the increase of the SDS concentration up to 1.0 wt% (0.035 mol/L), but a further increase of the surfactant concentration has a negative effect. The high temperature can greatly reduce the stability of CH4-SDS foam, while the foaming ability and foam stability can be significantly enhanced at high pressure. The addition of a small amount of polyacrylamide as a foam stabilizer can significantly increase the viscosity of the bulk solution and improve the foam stability, and the higher the molecular weight of the polymer, the higher viscosity of the foam liquid film, the better foam performance.  相似文献   
10.
Enriching the micronutrients, selenium (Se) and lithium (Li), in grapes to improve their nutraceutical properties were implemented by foliar application of organic fertiliser rich in Se and Li onto five grape cultivars. The effects of this biofortification on vine vigour, fruit quality, overall micronutrients and phenolic compounds also were investigated. Agronomic biofortification was found greatly increased the Se and Li content in the whole grape by multiple times, meanwhile it did not significantly affect the vine vigour and fruit quality of grapes. However, the biofortification did impact the Ionome (including all the mineral nutrients and trace elements) and phenolic compounds in grapes and this varied among cultivars. This study demonstrated foliar spray of organic Se/Li fertiliser was a very effective strategy to biofortify these micronutrients in grape berries, particularly in the skin, and therefore might be a promising strategy to increase the consumption and awareness of these grapes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号